Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 16(1): 97, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285078

RESUMO

Engineering transition metal compounds (TMCs) catalysts with excellent adsorption-catalytic ability has been one of the most effective strategies to accelerate the redox kinetics of sulfur cathodes. Herein, this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping, bimetallic/bi-anionic TMCs, and TMCs-based heterostructure composites. It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band, d/p-band center, electron filling, and valence state. Moreover, the electronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity, electron filling, and ion radius, resulting in electron redistribution, bonds reconstruction, induced vacancies due to the electronic interaction and changed crystal structure such as lattice spacing and lattice distortion. Different from the aforementioned two strategies, heterostructures are constructed by two types of TMCs with different Fermi energy levels, which causes built-in electric field and electrons transfer through the interface, and induces electron redistribution and arranged local atoms to regulate the electronic structure. Additionally, the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out. It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries.

2.
J Nanosci Nanotechnol ; 20(2): 852-857, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383080

RESUMO

To provide clean energies, great efforts have been contributed to hydrogen production via photocatalytic water splitting over the past decades. Among many potential materials, TiO2 nanotube array has been considered as one of the most attractive photoanodes due to its advantages, such as low cost, non-toxicity and chemical stability. It has been discovered that TiO2 nanotube arrays (TNTs)' photocatalytic performance was dictated by their morphologies, which is mainly controlled by the outer voltage. In order to further understand the effect of TNTs' morphologies on their photocatalytic capability, TNTs with different structures had been fabricated under different voltage (10, 20, 30, 40 and 50 V). The obtained TNTs' morphologies and phase were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction analyzer (XRD). The photocatalytic properties of TNTs were investigated in aqueous solution under xenon lamp irradiation. It was identified that the highest hydrogen production of the sample synthesized at the voltage of 30 V was 1979.8 µmol/h·g during the first cycle.

3.
Nanoscale ; 11(41): 18968-18994, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31361294

RESUMO

Hydrogen production from photoelectrochemical (PEC) water splitting using semiconductor photocatalysts has attracted great attention to realize clean and renewable energy from solar energy. The visible light response of WO3 with a long hole diffusion length (∼150 nm) and good electron mobility (∼12 cm2 V-1 s-1) makes it suitable as the photoanode. However, WO3 suffers from issues including rapid recombination of photoexcited electron-hole pairs, photo-corrosion during the photocatalytic process due to the formation of peroxo-species, sluggish kinetics of photogenerated holes, and slow charge transfer at the semiconductor/electrolyte interface. This work highlights the approaches to overcome these drawbacks of WO3 photoanodes, including: (i) the manipulation of nanostructured WO3 photoanodes to decrease the nanoparticle size to promote hole migration to the WO3/electrolyte interface which benefits the charge separation; (ii) doping or introducing oxygen vacancies to improve electrical conductivity; exposing high energy crystal surfaces to promote the consumption of photogenerated holes on the high-active crystal face, thereby suppressing the recombination of photogenerated electrons and holes; (iii) decorating with co-catalysts to reduce the overpotential which inhibits the formation of peroxo-species; (iv) other methods such as coupling with narrow band semiconductors to accelerate the charge separation and controlling the crystal phase via annealing to reduce defects. These approaches are reviewed with detailed examples.

4.
Int J Nanomedicine ; 14: 3297-3309, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190794

RESUMO

Background: Cardiovascular disease (CVD) is the leading cause of mortality all over the world. Vascular stents are used to ameliorate vascular stenosis and recover vascular function. The application of nanotubular coatings has been confirmed to promote endothelial cell (EC) proliferation and function. However, the regulatory mechanisms involved in cellular responses to the nanotubular topography have not been defined. In the present study, a microarray analysis was performed to explore the expression patterns of long noncoding RNAs (lncRNAs) in human coronary artery endothelial cells (HCAECs) that were differentially expressed in response to nitinol-based nanotubular coatings. Materials and methods: First, anodization was performed to synthesize nitinol-based nanotubular coatings. Then, HCAECs were cultured on the samples for 24 h to evaluate cell cytoskeleton organization. Next, total RNA was extracted and synthesized into cRNA, which was hybridized onto the microarray. GO analysis and KEGG pathway analysis were performed to investigate the roles of differentially expressed messenger RNAs (mRNAs). Quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) was performed to validate the expression of randomly selected lncRNAs. Coexpression networks were created to identify the interactions among lncRNAs and the protein-coding genes involved in nanotubular topography-induced biological and molecular pathways. Independent Student's t-test was applied for comparisons between two groups with statistical significance set at p<0.05. Results: 1085 lncRNAs and 227 mRNAs were significantly differentially expressed in the nitinol-based nanotubular coating group. Bioinformatics analysis revealed that extracellular matrix receptor interactions and cell adhesion molecules play critical roles in the sensing of nitinol-based nanotubular coatings by HCAECs. The TATA-binding protein (TBP) and TBP-associated transfactor 1 (TAF1) are important molecules in EC responses to substrate topography. Conclusion: This study suggests that nanotubular substrate topography regulates ECs by differentially expressed lncRNAs involved extracellular matrix receptor interactions and cell adhesion molecules.


Assuntos
Ligas/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Vasos Coronários/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Nanotubos/química , RNA Longo não Codificante/genética , Proliferação de Células/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Células Endoteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Análise em Microsséries , Nanotubos/ultraestrutura , Fenótipo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...