Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374531

RESUMO

In this work, a dual-band transmissive polarization conversion metasurface (PCM), with omnidirectional polarization and low profile, is proposed. The periodic unit of the PCM is composed of three metal layers separated by two substrates. The upper patch layer of the metasurface is the patch-receiving antenna, while the bottom layer is the patch-transmitting antenna. Both antennas are arranged in an orthogonal way so that the cross-polarization conversion can be realized. The equivalent circuit analysis, structure design, and experimental demonstration are conducted in detail, the polarization conversion rate (PCR) is greater than 90% within two frequency bands of 4.58-4.69 GHz and 5.33-5.41 GHz, and the PCR at two center operating frequencies of 4.64 GHz and 5.37 GHz is as high as 95%, with a thickness of only 0.062λL, where λL is the free space wavelength at the lowest operating frequency. The PCM can realize a cross-polarization conversion, when the incident linearly polarized wave at an arbitrary polarization azimuth, which indicates that it has the characteristics of omnidirectional polarization.

2.
Materials (Basel) ; 16(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36837247

RESUMO

Metamaterial absorbers (MMAs) that absorb electromagnetic waves among an ultra-broad frequency band have attracted great attention in military and civilian applications. In this paper, an ultra-broadband and highly-efficient MMA is presented. The unit cell of the proposed MMA was constructed with two cross-placed stand-up gradient impedance graphene films, which play a key role in improving impedance matching. Considering the trade-off between absorbing performance and processing complexity, in our design, we adopted the stand-up graphene films that have a gradient with three orders of magnitude in total. The simulated results of the proposed absorber show an ultra-broadband absorption (absorptivity > 90%) from 1.8 GHz to 66.7 GHz and a highly-efficient absorption (absorptivity > 97%) in the range of 2-21.7 GHz and 39.6-57 GHz. The field analysis was adopted to explain the mechanism of the proposed absorber. To validate this design, a prototype of 20 × 20 units was processed and assembled. The graphene films were processed with graphene conductive ink using screen print technology. The measured results are in good agreement with the simulated ones. The proposed absorber may find potential applications in the field of stealth technologies and electromagnetic interference.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...