Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Leukemia ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969731

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy arising from immature thymocytes. Unlike well-known oncogenic transcription factors, such as NOTCH1 and MYC, the involvement of chromatin remodeling factors in T-ALL pathogenesis is poorly understood. Here, we provide compelling evidence on how SWI/SNF chromatin remodeling complex contributes to human T-ALL pathogenesis. Integrative analysis of transcriptomic and ATAC-Seq datasets revealed high expression of SMARCA4, one of the subunits of the SWI/SNF complex, in T-ALL patient samples and cell lines compared to normal T cells. Loss of SMARCA protein function resulted in apoptosis induction and growth inhibition in multiple T-ALL cell lines. ATAC-Seq analysis revealed a massive reduction in chromatin accessibility across the genome after the loss of SMARCA protein function. RUNX1 interacts with SMARCA4 protein and co-occupies the same genomic regions. Importantly, the NOTCH1-MYC pathway was primarily affected when SMARCA protein function was impaired, implicating SWI/SNF as a novel therapeutic target.

2.
Water Res ; 260: 121878, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38870860

RESUMO

Gen X and F-53B have been popularized as alternatives to PFOA and PFOS, respectively. These per(poly)fluoroalkyl substances pervasively coexist with microplastics (MPs) in aquatic environments. However, there are knowledge gaps regarding their potential eco-environmental risks. In this study, a typical free-floating macrophyte, Eichhornia crassipes (E. crassipes), was selected for hydroponic simulation of a single exposure to PFOA, PFOS, Gen X, and F-53B, and co-exposure with polystyrene (PS) microspheres. F-53B exhibited the highest bioaccumulation followed by Gen X, PFOA, and PFOS. In the presence of PS MPs, the bioavailabilities of the four PFASs shifted and the whole plant bioconcentration factors improved. All four PFASs induced severe lipid peroxidation, which was exacerbated by PS MPs. The highest integrated biomarker response (IBR) was observed for E. crassipes (IBR of shoot: 30.01, IBR of root: 22.79, and IBR of whole plant: 34.96) co-exposed to PS MPs and F-53B. The effect addition index (EAI) model revealed that PS MPs showed antagonistic toxicity with PFOA and PFOS (EAI < 0) and synergistic toxicity with Gen X and F-53B (EAI > 0). These results are helpful to compare the eco-environmental impacts of legacy and alternative PFASs for renewal process of PFAS consumption and provide toxicological, botanical, and ecoengineering insights under co-contamination with MPs.

3.
J Hazard Mater ; 474: 134778, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843637

RESUMO

Short-chained perfluoroalkyl acids (PFAAs, CnF2n+1-R, n ≤ 6) have merged as global concerns due to their extensive application and considerable toxicity. However, long-chained PFAAs (n ≥ 7) featured with high persistence are still ubiquitously observed in aquatic environment. To understand the uptake behavior of short-chained PFAAs in aquatic macrophytes, the uptake kinetics, bioconcentration, and translocation of short-chained PFAAs (3 ≤n ≤ 6) in two typical free-floating macrophytes (Eichhornia crassipes and Ceratophyllum demersum) were investigated in the treatments with and without long-chained PFAAs (7 ≤n ≤ 11). Results showed that short-chained PFAAs can be readily accumulated in both E. crassipes and C. demersum, and the uptake of short-chained PFAAs fit the two-compartment kinetic model well (p < 0.05). In the treatments with long-chained PFAAs, significant concentration decreases of all concerned short-chained PFAAs in E. crassipes and PFAAs with n ≤ 5 in C. demersum were observed. Long-chained PFAAs could hinder the uptake rates, bioconcentration factors, and translocation factors of most short-chained PFAAs in free-floating macrophytes (p < 0.01). Significant correlations between bioconcentration factors and perfluoroalkyl chain length were only observed when long-chained PFAAs were considered (p < 0.01). Our results underlined that the effects of long-chained PFAAs should be taken into consideration in understanding the uptake and bioaccumulation behaviors of short-chained PFAAs.


Assuntos
Eichhornia , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/metabolismo , Eichhornia/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Bioacumulação
4.
Proc Natl Acad Sci U S A ; 121(17): e2314450121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621133

RESUMO

Proteinaceous brain inclusions, neuroinflammation, and vascular dysfunction are common pathologies in Alzheimer's disease (AD). Vascular deficits include a compromised blood-brain barrier, which can lead to extravasation of blood proteins like fibrinogen into the brain. Fibrinogen's interaction with the amyloid-beta (Aß) peptide is known to worsen thrombotic and cerebrovascular pathways in AD. Lecanemab, an FDA-approved antibody therapy for AD, clears Aß plaque from the brain and slows cognitive decline. Here, we show that lecanemab blocks fibrinogen's binding to Aß protofibrils, preventing Aß/fibrinogen-mediated delayed fibrinolysis and clot abnormalities in vitro and in human plasma. Additionally, we show that lecanemab dissociates the Aß/fibrinogen complex and prevents fibrinogen from exacerbating Aß-induced synaptotoxicity in mouse organotypic hippocampal cultures. These findings reveal a possible protective mechanism by which lecanemab may slow disease progression in AD.


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais Humanizados , Trombose , Camundongos , Humanos , Animais , Fibrinogênio/metabolismo , Sistemas Microfisiológicos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo
5.
Bioresour Technol ; 395: 130386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286166

RESUMO

Mature compost is safe and stable, yet quality assessments are challenging owing to current maturity indicators' limitations. This study employed density fractionation to separate organic carbon into light and heavy fractions, offering a new perspective for assessing maturity. Results showed that light fraction organic carbon progressively transitioned into heavy fraction during composting, reducing the proportion of total organic carbon from 82.82% to 44.03%, while heavy fraction organic carbon increased to 48.58%. During the first seven days, the reduction rate of light fraction organic carbon decreased slowly, while the increase rate of heavy fraction declined sharply, levelling off thereafter. Light/heavy fraction organic carbon ratio was significantly correlated with existing maturity indicators (carbon/nitrogen ratio, humic acid/fulvic acid ratio, biological growth-related indicators), with the ratio below 1.33 serving as a potential compost maturity marker. Thus, given its simplicity and reliability, organic carbon density fractions is an innovative indicator for compost maturity assessments.


Assuntos
Compostagem , Animais , Suínos , Solo , Esterco , Carbono , Reprodutibilidade dos Testes , Nitrogênio/análise
6.
bioRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38293058

RESUMO

Proteinaceous brain inclusions, neuroinflammation, and vascular dysfunction are common pathologies in Alzheimer's disease (AD). Vascular deficits include a compromised blood-brain barrier, which can lead to extravasation of blood proteins like fibrinogen into the brain. Fibrinogen's interaction with the amyloid-beta (Aß) peptide is known to worsen thrombotic and cerebrovascular pathways in AD. Lecanemab, an FDA-approved antibody therapy for AD, shows promising results in facilitating reduction of Aß from the brain and slowing cognitive decline. Here we show that lecanemab blocks fibrinogen's binding to Aß protofibrils, normalizing Aß/fibrinogen-mediated delayed fibrinolysis and clot abnormalities in vitro and in human plasma. Additionally, we show that lecanemab dissociates the Aß/fibrinogen complex and prevents fibrinogen from exacerbating Aß-induced synaptotoxicity in mouse organotypic hippocampal cultures. These findings reveal a possible protective mechanism by which lecanemab may slow disease progression in AD.

7.
Dysphagia ; 39(2): 255-266, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37584721

RESUMO

To assess the severity and timing of penetration and aspiration (PA) of severe dysphagia after lateral medullary syndrome (LMS) and its association with temporal characteristics. We performed videofluoroscopic swallowing studies (VFSS) in 48 patients with LMS and severe dysphagia and 26 sex- and age-matched healthy subjects. The following temporal measures were compared between groups: velopharyngeal closure duration (VCD); hyoid bone movement duration (HMD); laryngeal vestibular closure duration (LCD); upper esophageal sphincter (UES) opening duration (UOD); stage transition duration (STD) and the interval between laryngeal vestibular closure and UES opening (LC-UESop). The association between temporal measures and Penetration-Aspiration Scale (PAS) scores was analyzed. Differences in timing measures were compared between subgroups (safe swallows, and swallows with PA events during and after the swallow). PAS scores ≥ 3 were seen in 48% of swallows (4% occuring before, 35% occurred during and 61% after the swallow) from the LMS patients. Significantly longer STD and LC-UESop were found in the patients compared to the healthy subjects (p < 0.05). Significant negative correlations with PA severity were found for HMD, LCD, and UOD. Short UOD was the strongest predictor with an area under the receiver-operating-characteristic curve of 0.66. UOD was also significantly shorter in cases of PA after the swallow (p < 0.01). Patients with LMS involving severe dysphagia exhibit a high frequency of PA (mostly during and after swallowing). PA events were associated with shorter UOD, HMD, and LCD. Notably, shortened UOD appears to be strongly associated with PA.


Assuntos
Transtornos de Deglutição , Síndrome Medular Lateral , Humanos , Transtornos de Deglutição/etiologia , Síndrome Medular Lateral/complicações , Deglutição , Aspiração Respiratória/etiologia , Fluoroscopia
8.
Arch Phys Med Rehabil ; 105(3): 531-538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37871671

RESUMO

OBJECTIVE: To explore characteristics of tongue pressure changes in nasopharyngeal carcinoma (NPC) patients with dysphagia after radiotherapy using a novel system with multisite flexible sensors. DESIGN: Prospective observational study. SETTING: Inpatient rehabilitation centers and community dwellings. PARTICIPANTS: Nineteen patients with dysphagia after radiotherapy for NPC and 19 healthy participants were recruited for this study (N=38). INTERVENTION: Not applicable. MAIN OUTCOME MEASURES: A new 9-site (3 × 3) flexible tongue pressure sensor was used to measure tongue-to-palate pressure across different parts of the tongue. The oral tongue was divided into 3 parts: anterior tongue region (TAR), central tongue region (TCR), and posterior tongue region (TPR); 3 sensors were placed on each part. The mean tongue pressure and endurance time at the 3 sites in the TAR, TCR, and TPR were analyzed. The ratios of the mean TAR, TCR, and TPR values were calculated. RESULTS: Pressures of TAR, TCR, and TPR in NPC patients with dysphagia were significantly lower than those in healthy participants (P<.05). The pressure in TPR decreased most significantly, followed by that in TCR. The endurance times of TAR and TCR were longer than those of healthy participants (P<.05). The endurance time of TPR was not significantly different between the patients and healthy participants (P>.05). Ratios of pressure between TAR and TCR and TAR and TPR in patients were lower than that in healthy participants (P<.05). There was no significant difference in the TCR to TPR pressure ratio between patients and healthy participants (P>.05). CONCLUSIONS: Tongue pressure significantly decreased in NPC patients with dysphagia, and the drop in pressure was most pronounced in the TPR area. The results of our study indicate that we should pay attention to the pressure training of the TPR during treatments. The endurance time of the TAR and TCR increased significantly, which may be due to bolus transport compensation. Therefore, clinical rehabilitation strategies should aim to increase the endurance time training in NPC patients after radiotherapy to help increase the effectiveness of the swallowing process in patients.


Assuntos
Transtornos de Deglutição , Neoplasias Nasofaríngeas , Humanos , Transtornos de Deglutição/etiologia , Carcinoma Nasofaríngeo/radioterapia , Pressão , Língua , Neoplasias Nasofaríngeas/radioterapia , Receptores de Antígenos de Linfócitos T
9.
Haematologica ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855064

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy derived from thymic T-cell precursors. Approximately 40-60% of T-ALL cases exhibit aberrant overexpression of the TAL1 oncogenic transcription factor. Here, we provide a comprehensive view of the TAL1-induced transcriptional program in human T-ALL cells using a rapid protein degradation system coupled with integrative approaches. Our study demonstrates that TAL1 targets can be classified into several groups, each of which exhibits unique gene expression kinetics, chromatin features, and regulatory mechanisms. Group A genes are highly dependent on TAL1, many of which are not expressed in normal T-cells or TAL1-negative T-ALL cells, representing an oncogenic TAL1 signature. The TAL1 complex predominantly activates Group A genes. TAL1's effect is not replaceable with its regulatory partners GATA3 or RUNX1. In contrast, Group B genes, many of which are generally expressed across different T-ALL subgroups, exhibit densely-connected chromatinchromatin interactions and demonstrate the collaborative roles played by TAL1 with other transcription factors. Interestingly, TAL1 cooperates with NOTCH1 to regulate gene expression in TAL1-positive T-ALL cells, whereas it potentially antagonizes the NOTCH1-MYC pathway and leads to lethality in TAL1-negative/TLX3-positive cells, demonstrating the context-dependent roles of TAL1.

10.
Environ Sci Technol ; 57(42): 16065-16074, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37843047

RESUMO

Understanding the mechanisms underlying perfluoroalkyl acids (PFAAs) translocation, distribution, and accumulation in wheat-soil ecosystems is essential for agricultural soil pollution control and crop ecological risk assessment. This study systematically investigated the translocation of 13 PFAAs under different iron and nitrogen fertilization conditions in a wheat-soil ecosystem. Short-chain PFAAs including PFBA, PFPeA, PFHxA, and PFBS mostly accumulated in soil solution (10.43-55.33%) and soluble extracellular polymeric substances (S-EPS) (11.39-14.77%) by the adsorption to amino- (-NH2) and hydroxyl (-OH) groups in dissolved organic matter (DOM). Other PFAAs with longer carbon chain lengths were mostly distributed on the soil particle surface by hydrophobic actions (74.63-94.24%). Iron-nitrogen amendments triggered (p < 0.05) soil iron-nitrogen cycling, rhizospheric reactive oxygen species fluctuations, and the concentration increases of -NH2 and -OH in the DOM structure. Thus, the accumulation capacity of PFAAs in soil solution and root EPS was increased. In sum, PFAAs' translocation from soil particles to wheat root was synergistically reduced by iron and nitrogen fertilization through increased adsorption of soil particles (p < 0.05) and the retention of soil solution and root EPSs. This study highlights the potential of iron-nitrogen amendments in decreasing the crop ecological risks to PFAAs' pollution.


Assuntos
Fluorocarbonos , Solo , Matéria Orgânica Dissolvida , Triticum , Ecossistema , Matriz Extracelular de Substâncias Poliméricas/química , Nitrogênio , Fluorocarbonos/análise
11.
Proc Natl Acad Sci U S A ; 120(36): e2309389120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639602

RESUMO

The amyloid-beta peptide (Aß) is a driver of Alzheimer's disease (AD). Aß monomers can aggregate and form larger soluble (oligomers/protofibrils) and insoluble (fibrils) forms. There is evidence that Aß protofibrils are the most toxic form, but the reasons are not known. Consistent with a critical role for this form of Aß in AD, a recently FDA-approved therapeutic antibody targeted against protofibrils, lecanemab, slows the progression of AD in patients. The plasma contact system, which can promote coagulation and inflammation, has been implicated in AD pathogenesis. This system is activated by Aß which could lead to vascular and inflammatory pathologies associated with AD. We show here that the contact system is preferentially activated by protofibrils of Aß. Aß protofibrils bind to coagulation factor XII and high molecular weight kininogen and accelerate the activation of the system. Furthermore, lecanemab blocks Aß protofibril activation of the contact system. This work provides a possible mechanism for Aß protofibril toxicity in AD and why lecanemab is therapeutically effective.


Assuntos
Doença de Alzheimer , Humanos , Peptídeos beta-Amiloides/toxicidade , Coagulação Sanguínea , Citoesqueleto , Fator XII
12.
Digit Health ; 9: 20552076231183548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434729

RESUMO

Objective: This study aims to establish a real-time dynamic monitoring system for silent aspiration (SA) to provide evidence for the early diagnosis of and precise intervention for SA after stroke. Methods: Multisource signals, including sound, nasal airflow, electromyographic, pressure and acceleration signals, will be obtained by multisource sensors during swallowing events. The extracted signals will be labeled according to videofluoroscopic swallowing studies (VFSSs) and input into a special dataset. Then, a real-time dynamic monitoring model for SA will be built and trained based on semisupervised deep learning. Model optimization will be performed based on the mapping relationship between multisource signals and insula-centered cerebral cortex-brainstem functional connectivity through resting-state functional magnetic resonance imaging. Finally, a real-time dynamic monitoring system for SA will be established, of which the sensitivity and specificity will be improved by clinical application. Results: Multisource signals will be stably extracted by multisource sensors. Data from a total of 3200 swallows will be obtained from patients with SA, including 1200 labeled swallows from the nonaspiration category from VFSSs and 2000 unlabeled swallows. A significant difference in the multisource signals is expected to be found between the SA and nonaspiration groups. The features of labeled and pseudolabeled multisource signals will be extracted through semisupervised deep learning to establish a dynamic monitoring model for SA. Moreover, strong correlations are expected to be found between the Granger causality analysis (GCA) value (from the left middle frontal gyrus to the right anterior insula) and the laryngeal rise time (LRT). Finally, a dynamic monitoring system will be established based on the former model, by which SA can be identified precisely. Conclusion: The study will establish a real-time dynamic monitoring system for SA with high sensitivity, specificity, accuracy and F1 score.

13.
Ecotoxicol Environ Saf ; 263: 115221, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421893

RESUMO

Artificial sweeteners have sparked a heated debate worldwide due to their ambiguous impacts on public and environmental health and food safety and quality. Many studies on artificial sweeteners have been conducted; however, none scientometric studies exist in the field. This study aimed to elaborate on the knowledge creation and development of the field of artificial sweeteners and predict the frontiers of knowledge based on bibliometrics. In particular, this study combined VOSviewer, CiteSpace, and Bibliometrix to visualize the mapping of knowledge production, covered 2389 relevant scientific publications (1945-2022), and systematically analyzed articles and reviews (n = 2101). Scientific publications on artificial sweeteners have been growing at an annual rate of 6.28% and globally attracting 7979 contributors. Susan J. Brown with total publications (TP) of 17, average citation per article (AC) of 36.59, and Hirsch (h)-index of 12 and Robert F. Margolskee (TP = 12; AC = 2046; h-index = 11) were the most influential scholars. This field was clustered into four groups: eco-environment and toxicology, physicochemical mechanisms, public health and risks, and nutrition metabolism. The publications about environmental issues, in particular, "surface water," were most intensive during the last five years (2018-2022). Artificial sweeteners are gaining importance in the monitoring and assessment of environmental and public health. Results of the dual-map overlay showed that the future research frontiers tilt toward molecular biology, immunology, veterinary and animal sciences, and medicine. Findings of this study are conducive to identifying knowledge gaps and future research directions for scholars.


Assuntos
Bibliometria , Saúde Ambiental , Animais , Inocuidade dos Alimentos , Temperatura Alta , Estado Nutricional , Publicações
14.
Front Aging Neurosci ; 15: 1064178, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967821

RESUMO

Introduction: Alzheimer's Disease (AD) patients exhibit signs of motor dysfunction, including gait, locomotion, and balance deficits. Changes in motor function often precede other symptoms of AD as well as correlate with increased severity and mortality. Despite the frequent occurrence of motor dysfunction in AD patients, little is known about the mechanisms by which this behavior is altered. Methods and Results: In the present study, we investigated the relationship between cerebrovascular impairment and motor dysfunction in a mouse model of AD (Tg6799). We found an age-dependent increase of extravasated fibrinogen deposits in the cortex and striatum of AD mice. Interestingly, there was significantly decreased cerebrovascular density in the striatum of the 15-month-old as compared to 7-month-old AD mice. We also found significant demyelination and axonal damage in the striatum of aged AD mice. We analyzed striatum-related motor function and anxiety levels of AD mice at both ages and found that aged AD mice exhibited significant impairment of motor function but not in the younger AD mice. Discussion: Our finding suggests an enticing correlation between extravasated fibrinogen, cerebrovascular damage of the striatum, and motor dysfunction in an AD mouse model, suggesting a possible mechanism underlying motor dysfunction in AD.

15.
Water Sci Technol ; 87(5): 1187-1201, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36919742

RESUMO

Inner coastal wetland ecosystems are generally eutrophic and are often exposed to both salinity stress and Escherichia coli pollution. However, the effects of these stressors on nutrient-cycling and microbial communities are under-researched. Here, we established a vegetated wetland ecosystem in a saline environment to understand the effects of E. coli pollution on nutrient removal and benthic microorganisms. The results show that E. coli significantly inhibited nutrient removal, especially total nitrogen (TN) and ammonium (78.89-84.98 and 3.45-44.65% were removed from the non-E. coli-treated and the E. coli-treated water, respectively). Compared with non-vegetated systems, archaeal community variations at both compositional and phylogenetic levels were weakened in vegetated systems (p < 0.05). Among all the environmental factors, the ratios of PO43--P to total phosphorus and NO3--N to TN contributed the most to archaeal and bacterial community structural variations, respectively. E. coli pollution affected archaeal community succession more than bacteria (p < 0.05). E. coli also weakened the trophic transferring efficiencies between Cyanobacteria and Myxobacteria (p < 0.05). Metabolically, E. coli inhibited bacterial genetic metabolic pathways but made human infection more likely (p < 0.05). Our findings provide new insights into aquatic ecological conservation and environmental management.


Assuntos
Ecossistema , Áreas Alagadas , Humanos , Salinidade , Filogenia , Bactérias/genética , Archaea/genética , Escherichia coli/genética , Nutrientes , Nitrogênio
16.
Front Pediatr ; 11: 1090332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743886

RESUMO

Objectives: Pulmonary hemorrhage (PH) is one kind of critical lung diseases in newborn infants, which is the most difficult one to be diagnosed by ultrasound. This study was to investigate the specific ultrasonic signs of PH in order to better diagnose neonatal PH by using lung ultrasound (LUS). Methods: A total 168 newborn infants were enrolled in this study, which included PH, pneumonia, meconium aspiration syndrome, and newborns without lung diseases, there were 42 cases in each group. In a quiet state, infants were placed in the supine, lateral or prone position for the examination. Each lung was divided into the anterior, lateral and posterior regions, then each region of both lungs was scanned with the probe perpendicular to the ribs or parallel to the Intercostal spaces. Results: The major results showed that: (1) the common LUS manifestation of PH includes lung consolidation, air bronchograms, fluid bronchograms, pleural effusion, shred signs, pleural line abnormality and B-lines, while fibrin deposition sign is a rare sign of PH. (2) Co-existing of lung consolidation with fluid bronchograms and pleural effusion is the specific sign of PH with a sensitivity of 81.0%, specificity of 98.4% and the positive predictive value (PPV) was 94.4%. (3) Fibrin deposition sign is an uncommon specific LUS sign of PH with a sensitivity 28.6%, specificity of 100% and the PPV was 100%. (4) Nine patients (21.4%) were diagnosed with PH based on ultrasound findings before oronasal bleeding. (5) The survival rate of infants with PH was 100% in this study. Conclusion: LUS is helpful for the early diagnosis of neonatal PH and may therefore improve the prognosis. The lung consolidation with fluid bronchograms and pleural effusion as well as fibrin deposition sign are specific to diagnose PH by using LUS.

17.
Chemosphere ; 320: 138110, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773678

RESUMO

Per-fluoroalkyl substances (PFASs) have been widely detected in farmland soils and are understood to pose toxicological threats to soil microbiomes and crop safety. Meanwhile, farmland ecosystems have experienced increasing nitrogen loading caused by soil fertilization. Yet it is still unclear how nitrogen additions affect soil's microbial responses to PFASs. In this study, using a laboratory-based ecological experiment, we assessed the microbial availability of PFASs in soils receiving ammonium, nitrate, and urea nitrogen amendments by quantifying the translocation factors of PFASs from soil particle to soil extracellular polymeric substances (EPS). Our results showed that nitrogen, specifically ammonium, significantly increased the PFASs' microbial availability (p < 0.05). Second, nitrogen fertilization in PFASs-polluted soils decreased the microbial community diversity and stability at the structural, species, and functional levels (p < 0.05). For soil microbial activities, nitrogen enhanced the activity of superoxide dismutase (SOD) while it inhibited the catalase (CAT) and peroxidase (POD) (p < 0.01). Congruently, PFASs, as well as the nitrate and nitrite nitrogen, were shown to be the predominant abiotic drivers regulating the soil fungal succession (p < 0.05), while bacteria were mostly regulated by dissolved organic carbon (DOC) (p < 0.01). Furthermore, we revealed that the nitrogen cycling gene hmp (dominates the transformation from NO to NO3-) was the hub gene integrating the microbially available PFASs and the soil nitrogen cycling processes (p < 0.01), indicating that hmp could be the core regulator affecting the accumulation of PFASs in soil EPS. Our study highlighted that decreasing ammonia's amendments could mitigate China's national initiatives to reduce nitrogen fertilization in farmlands, reduce the PFASs' availability to the soil microbiome, and protect the microbial community stability in soil.


Assuntos
Compostos de Amônio , Fluorocarbonos , Ecossistema , Solo/química , Triticum , Nitratos , Nitrogênio/análise , Microbiologia do Solo , Carbono/química
18.
Brain Sci ; 13(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36672072

RESUMO

Objectives: Investigate the biomechanical characteristics in tracheostomized patients with aspiration following acquired brain injury (ABI) and further explore the relationship between the biomechanical characteristics and aspiration. Methods: This is a single-center cross-sectional study. The tracheostomized patients with aspiration following ABI and age-matched healthy controls were recruited. The biomechanical characteristics, including velopharynx (VP) maximal pressure, tongue base (TB) maximal pressure, upper esophageal sphincter (UES) residual pressure, UES relaxation duration, and subglottic pressure, were examined by high-resolution manometry and computational fluid dynamics simulation analysis. The penetration−aspiration scale (PAS) score was evaluated by a videofluoroscopic swallowing study. Results: Fifteen healthy subjects and fifteen tracheostomized patients with aspiration following ABI were included. The decreased VP maximal pressure, increased UES residual pressure, and shortened UES relaxation duration were found in the patient group compared with the control group (p < 0.05). Furthermore, the subglottic pressure significantly decreased in patients (p < 0.05), while no significant difference was found in TB maximal pressure between groups (p > 0.05). In addition, in the patient group, VP maximal pressure (rs = −0.439; p = 0.015), UES relaxation duration (rs = −0.532; p = 0.002), and the subglottic pressure (rs = −0.775; p < 0.001) were negatively correlated with the PAS score, while UES residual pressure (rs = 0.807; p < 0.001) was positively correlated with the PAS score (p < 0.05), the correlation between TB maximal pressure and PAS score (rs = −0.315; p = 0.090) did not reach statistical significance. Conclusions: The biomechanical characteristics in tracheostomized patients with aspiration following ABI might manifest as decreased VP maximal pressure and subglottic pressure, increased UES residual pressure, and shortened UES relaxation duration, in which VP maximal pressure, UES relaxation duration, subglottic pressure, and UES residual pressure were correlated with aspiration.

19.
Phys Chem Chem Phys ; 25(3): 2462-2467, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36601881

RESUMO

We report the structure, magnetic and electrical/thermal transport properties of the antiferromagnet MnSn2. Importantly, the existence of the two antiferromagnetic states below TN2 (∼320 K) is confirmed by magnetism and electrical transport measurements. An unsaturated positive magnetoresistance up to 150% at ∼9 T was observed at 5 K, whereas the magnetoresistance becomes negative in the whole range at high temperatures (T > 74 K). Systematic investigations of the Hall transport and thermoelectric properties reveal that the hole-type carriers are the majority carriers in MnSn2. The kink around 320 K in the Seebeck coefficient originates from the effect of the antiferromagnetic phase on the band structure, while the pronounced peak around 231 K is attributed to the phonon-drag effect. The results suggest that the spin arrangement plays a vital role in the magnetic, electrical, and thermal transport properties in MnSn2.

20.
Blood Adv ; 7(7): 1156-1167, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36409609

RESUMO

A dysregulated plasma contact system is involved in various pathological conditions, such as hereditary angioedema, Alzheimer disease, and sepsis. We previously showed that the 3E8 anti-high molecular weight kininogen (anti-HK) antibody blocks HK cleavage and bradykinin generation in human plasma ex vivo. Here, we show that 3E8 prevented not only HK cleavage but also factor XI (FXI) and prekallikrein (PK) activation by blocking their binding to HK in mouse plasma in vivo. 3E8 also inhibited contact system-induced bradykinin generation in vivo. Interestingly, FXII activation was also inhibited, likely because of the ability of 3E8 to block the positive feedback activation of FXII by kallikrein (PKa). In human plasma, 3E8 also blocked PK and FXI binding to HK and inhibited both thrombotic (FXI activation) and inflammatory pathways (PK activation and HK cleavage) of the plasma contact system activation ex vivo. Moreover, 3E8 blocked PKa binding to HK and dose-dependently inhibited PKa cleavage of HK. Our results reveal a novel strategy to inhibit contact system activation in vivo, which may provide an effective method to treat human diseases involving contact system dysregulation.


Assuntos
Pré-Calicreína , Trombose , Humanos , Animais , Camundongos , Pré-Calicreína/química , Pré-Calicreína/metabolismo , Fator XI/metabolismo , Bradicinina/farmacologia , Bradicinina/química , Cininogênio de Alto Peso Molecular/química , Cininogênio de Alto Peso Molecular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...