Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 917, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36801865

RESUMO

The formation of polaron, i.e., the strong coupling process between the carrier and lattice, is considered to play a crucial role in benefiting the photoelectric performance of hybrid organic-inorganic halide perovskites. However, direct observation of the dynamical formation of polarons occurring at time scales within hundreds of femtoseconds remains a technical challenge. Here, by terahertz emission spectroscopy, we demonstrate the real-time observation of polaron formation process in FAPbI3 films. Two different polaron resonances interpreted with the anharmonic coupling emission model have been studied: P1 at ~1 THz relates to the inorganic sublattice vibration mode and the P2 at ~0.4 THz peak relates to the FA+ cation rotation mode. Moreover, P2 could be further strengthened than P1 by pumping the hot carriers to the higher sub-conduction band. Our observations could open a door for THz emission spectroscopy to be a powerful tool in studying polaron formation dynamics in perovskites.

2.
J Phys Chem Lett ; 13(49): 11398-11404, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36458835

RESUMO

Two-dimensional transition metal dichalcogenides (TMDs) have great potential application for seamless on-chip integration due to their strong photon-electron-spin-valley coupling. However, the contact-free measurements of the valley-coupled photocurrent in TMDs is still challenging. Here, ultrafast terahertz emission spectroscopy is employed to investigate the photocurrent dynamics in monolayer WSe2, and an interface-induced drift current amplification is found in the WSe2/Si heterostructure. The amplification of terahertz emission comes from the photocurrent enlarged by band bending in the WSe2 and Si junction, and the amplification ratio increase further near the valley resonant transition of WSe2. In addition, the valley-momentum locked photocurrent in the WSe2/Si heterostructure reserves the same chirality with monolayer WSe2 at room temperature. These findings could provide a new method for manipulating valley-momentum locked photocurrent by photon helicity and open new avenues for TMD-based valley-polarized terahertz emission devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...