Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 38(5): 1196-1210, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36880448

RESUMO

One of the important monitoring indicators of the air pollution is atmospheric fine particulate matter (PM2.5 ), which can induce lung inflammation after inhalation. Coelonin can alleviate PM2.5 -induced macrophage damage through anti-inflammation. However, its molecular mechanism remains unclear. We hypothesized that macrophage damage may involve the release of inflammatory cytokines, activation of inflammatory pathways, and pyrosis induced by inflammasome. In this study, we evaluated the anti-inflammation activity of coelonin in PM2.5 -induced macrophage and its mechanism of action. Nitric oxide (NO) and reactive oxygen species (ROS) production were measured by NO Assay kit and dichlorofluorescein-diacetate (DCFH-DA), and apoptosis were measured by Flow cytometry and TUNEL staining. The concentration of inflammatory cytokines production was measured with cytometric bead arrays and ELISA kits. The activation of NF-κB signaling pathway and NLRP3 inflammasome were measured by immunofluorescence, quantitative reverse transcription-polymerase chain reaction and western blot. As expected, coelonin pretreatment reduced NO production significantly as well as alleviated cell damage by decreasing ROS and apoptosis. It decreased generation of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in PM2.5 -induced RAW264.7 and J774A.1 cells. Moreover, coelonin markedly inhibited upregulating the expression of toll-like receptor (TLR)4 and cyclo-oxygenase (COX)-2, blocked activation of p-nuclear factor-kappa B (NF-κB) signaling pathway, and suppressed expression of NLRP3 inflammasome, ASC, GSDMD, IL-18 and IL-1ß. In conclusion, the results showed that coelonin could protect against PM2.5 -induced macrophage damage via suppressing TLR4/NF-κB/COX-2 signaling pathway and NLRP3 inflammasome activation in vitro.


Assuntos
Inflamassomos , NF-kappa B , NF-kappa B/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ciclo-Oxigenase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , Citocinas/metabolismo , Interleucina-6 , Anti-Inflamatórios/farmacologia , Material Particulado/toxicidade
2.
BMC Complement Altern Med ; 19(1): 369, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842843

RESUMO

BACKGROUND: Bletilla striata is a traditional Chinese medicine used to treat hemorrhage, scald, gastric ulcer, pulmonary diseases and inflammations. In this study, we investigated bioactivity of the effective fraction of B. striata (EFB) in reducing the inflammatory cytokine production induced by water or organic extracts of PM2.5. METHODS: PM2.5 extracts were collected and analyzed by chromatographic system and inductively coupled plasma mass spectrometer. Cell viability was measured using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay, and cell supernatant was analyzed by flow cytometry, ELISA, and qRT-PCR in cultured mouse macrophage cell line RAW264.7 treated with EFB and PM2.5 extracts. Expressions of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway were measured by Western blot. RESULTS: PM2.5 composition is complex and the toxicity of PM2.5 extracts were not noticeable. The treatment of EFB at a wide dose-range of 0-40 µg/mL did not cause significant change of RAW264.7 cell proliferation. EFB pretreatment decreased the inflammatory cytokines in the macrophage. Further analysis showed that EFB significantly attenuated PM2.5-induced proinflammatory protein expression and downregulated the levels of phosphorylated NF-κBp65, inhibitor of kappa B (IκB)-α, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38. CONCLUSIONS: Our study demonstrated the potential effectiveness of B. striata extracts for treating PM2.5-triggered pulmonary inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Orchidaceae , Material Particulado/toxicidade , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Citocinas/análise , Citocinas/genética , Inflamação/metabolismo , Camundongos , Modelos Imunológicos , Extratos Vegetais/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...