Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Int J Biol Macromol ; 272(Pt 1): 132873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838890

RESUMO

The decoctions of sunflower (Helianthus annuus L. HAL) stalk pith have been used to treat advanced cancer, and polysaccharide of sunflower stalk pith (HSPP) was key ingredient of the decoctions. To forage specially structured HSPP with anti-tumor effects and to uncover its mechanisms of anticancer activity, syngeneic mouse model of lung carcinoma metastasis was established and the HSPP was found to contain long-chain fatty acid. Encouragingly, the mean survival of the polysaccharide group (47.3 ± 12.8 d) and its sub-fractions group HSPP-4 (50.7 ± 13.0 d) was significantly increased compared with control group (38.7 ± 12.7 d) or positive control group (41.8 ± 13.4 d), (n = 20, P < 0.01 vs. the control group or positive control group). Furthermore, the HSPP exerted inhibitory effects on the tumor cells' metastasis. Eventually, it is postulated that the polysaccharide could inhibit tumor proliferation and metastasis by reduction of TNF-α from the macrophage.


Assuntos
Proliferação de Células , Helianthus , Metástase Neoplásica , Polissacarídeos , Fator de Necrose Tumoral alfa , Helianthus/química , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Fator de Necrose Tumoral alfa/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico
2.
Int J Biol Macromol ; 271(Pt 1): 132523, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788864

RESUMO

The oral route of administration is considered the optimal choice for treating chronic diseases due to its convenience and non-invasiveness, which can help prevent physical and mental harm to patients undergoing long-term treatment. However, challenges such as safety, gastrointestinal stability, and bioavailability of oral drugs often limit their effectiveness. Natural biomacromolecule micelles, known for their safety, stability, biocompatibility, and diverse functions, have emerged as promising carriers for oral treatment of chronic diseases like systemic lupus erythematosus (SLE) with fat-soluble drugs. This study introduces an innovative approach by developing an oral delivery system using chemically synthesized natural biomacromolecules to load artesunate for treating SLE. By synthesizing amphiphilic polymer micelles from pectin and casein through a carbodiimide reaction, a more stable structure is achieved. The hydrophobic core of these micelles encapsulates artesunate, resulting in the formation of an oral delivery system (PC-AS) with several advantages, including high drug loading and encapsulation efficiency, small particle size, negative potential, strong stability in the gastrointestinal tract, low toxicity and side effects, strong adhesion in the small intestine, and high bioavailability. These advantages facilitate efficient absorption of artesunate in the gastrointestinal tract, leading to improved bioavailability and effective alleviation of SLE-like symptoms in MRL/lpr mice. By utilizing chemically synthesized natural macromolecular micelles for delivering artesunate in the treatment of SLE, this study overcomes the oral barriers associated with the original drug and presents a novel solution for the long-term oral treatment of chronic diseases.


Assuntos
Artesunato , Caseínas , Portadores de Fármacos , Lúpus Eritematoso Sistêmico , Micelas , Pectinas , Pectinas/química , Animais , Administração Oral , Portadores de Fármacos/química , Camundongos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Artesunato/administração & dosagem , Artesunato/farmacologia , Artesunato/química , Artesunato/farmacocinética , Artesunato/uso terapêutico , Caseínas/química , Caseínas/administração & dosagem , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Feminino , Liberação Controlada de Fármacos , Tamanho da Partícula
3.
Int J Biol Macromol ; 211: 207-217, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35490765

RESUMO

The current work aimed to enhance the oral bioavailability of water-insoluble drug Artemisinin (ART) by the inclusion of ART with hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and then loaded with porous starch (PS). The preparation conditions of ART HP-ß-CD inclusion complex loaded with PS (AHPS) were optimized according to drug loading (DL) and entrapment efficiency (EE). The properties of AHPS were characterized by optical and thermodynamic methods. ART was linked by hydrogen bond to HP-ß-CD to form hydrophilic supramolecules, which are loaded into PS under the action of hydrogen bond. The maximum DL and EE of AHPS were about 16.51% and 67.26%, respectively. Then we investigated the physicochemical properties and antimalarial activity of AHPS. The solubility and bioavailability of AHPS at 48 h were higher than ART and market ART piperaquine tablets (APT), and showed better antimalarial activity in vitro and vivo. It provides a new idea for the development and application of fat-soluble drug.


Assuntos
Antimaláricos , Artemisininas , 2-Hidroxipropil-beta-Ciclodextrina/química , Antimaláricos/farmacologia , Disponibilidade Biológica , Porosidade , Solubilidade , Amido
4.
J Oleo Sci ; 70(8): 1133-1146, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34248097

RESUMO

Enzyme-assisted solvent extraction (EASE) of Paeonia suffruticosa Andr. seed oil (PSO) was optimized by response surface methodology (RSM). The fatty acid composition and anti-Alzheimer's disease (AD) activity of PSO were analyzed. An enzyme mixture composed of cellulase and hemicellulase (1:1, w/w) was most effective in determining the extraction yield of PSO. The ideal extraction conditions were a pH value of 5.1, an enzymolysis time of 68 min, and a temperature of 50℃. The average extraction yield of PSO was 38.2 mL/100 g, 37.4% higher than that of untreated peony seed (27.8 mL/100 g). The fatty acid composition of PSO under optimal conditions for EASE was analyzed by gas chromatography-mass spectrometry (GC-MS). The predominant unsaturated fatty acids of PSO were determined to be more than 90.00%, including n-3 α-linolenic acid (43.33%), n-6 linoleic acid (23.40%) and oleic acid (23.59%). In this experiment, the anti-AD effect of PSO was also analyzed by performing learning and memory ability tests with Drosophila. PSO retarded the decrease in climbing ability in AD Drosophila. The 1% and 5% PSO groups were significantly different from the model group (b p < 0.05). The smell short-term memory ability test revealed the number of Drosophila in barrier and barrier-free centrifuge tubes in each group. PSO feeding improved learning and memory in AD Drosophila, with the highest number entering the barrierfree centrifuge tube. The performance index (PI) measured by the Pavlov olfactory avoidance conditioning test also demonstrated the effect of PSO on the learning and memory abilities of Drosophila. The PI of the PSO group was significantly increased compared to that of the model group. HE-stained brain tissue sections of AD Drosophila showed higher neurodegenerative changes, while PSO significantly reduced neurodegenerative damage. These results indicated that PSO can significantly improve the cognitive function of AD Drosophila and may help to prevent AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Nootrópicos/uso terapêutico , Paeonia/química , Óleos de Plantas/uso terapêutico , Sementes/química , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Drosophila/efeitos dos fármacos , Ácidos Graxos/análise , Glicosídeo Hidrolases/química , Química Verde/métodos , Aprendizagem/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Nootrópicos/análise , Nootrópicos/química , Nootrópicos/isolamento & purificação , Percepção Olfatória/efeitos dos fármacos , Óleos de Plantas/análise , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Extração em Fase Sólida/métodos
5.
J Sci Food Agric ; 101(4): 1314-1322, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33245580

RESUMO

BACKGROUND: Pine oil contains a high percentage of polyunsaturated fatty acids, which make it prone to oxidation. Luteolin (LUT) micro-nano particles with antioxidant properties can be used as stabilizers to form an edible oil-in-water Pickering emulsion to improve the oxidative stability of pine nut oil. RESULTS: Under optimal preparation conditions, the LUT micro-nano particles and pine nut oil account for about 0.44 and 90.9 g·kg-1 of the total mass of the emulsion, respectively. The LUT particles in the suspension have a mean particle size of about 479 nm, present a sheet-like structure with a cut surface of 30-50 nm, and can reduce the surface tension of deionized water. In the optimized Pickering emulsion, the emulsion droplets are approximately spherical and have a mean diameter of about 125.6 nm and uniform distribution. The optimized Pickering emulsion droplets can remain stable for up to 2 h in an environment where the pH levels are 7-8.5, ultraviolet B radiation (UVB) irradiation, of less than 5.0 g·kg-1 , and at a temperature of 80 °C. The stability of the emulsion in simulated digestive fluid changed minimally. In the first 7 days of the accelerated oxidation experiment, LUT micro-nano particles not only successfully protected the integrity of emulsion droplets but also fully inhibited the peroxidation of pine oil. CONCLUSION: The strong antioxidant properties of LUT micro-nano particles, and the dense protective layer they formed, stabilized the Pickering emulsion successfully. The particles also improved the oxidation stability of pine nut oil. © 2020 Society of Chemical Industry.


Assuntos
Luteolina/química , Pinus/química , Óleos de Plantas/química , Emulsões/química , Nozes/química , Oxirredução , Tamanho da Partícula
6.
Pharmaceutics ; 12(2)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979138

RESUMO

In view of the poor water solubility and low oral bioavailability of mangiferin (MG), in this study, the supercritical antisolvent (SAS) technology was used to prepare mangiferin microparticles (MG MPs) with N,N-dimethylformamide (DMF) as solvent and carbon dioxide as antisolvent, so as to improve its water solubility, antioxidant capacity and oral bioavailability. Four factors affecting the solubility of the MG MPs were investigated by orthogonal design (OAD), including precipitation pressure, precipitation temperature, MG concentration and feeding speed, and the optimal preparation conditions were determined by range and variance analysis (ANOVA). Under the optimal conditions, the spherical MG MPs with an average diameter of 532.8 nm was obtained, and the yield of the powder was about 95.3%. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), X-Ray Diffractometry (XRD), differential scanning calorimetry (DSC), and thermal gravimetric (TG) were used to analyze the characteristics of the MG MPs. The results obtained showed that the chemical structure of the MG did not change before and after supercritical crystallization, but its particle size and crystallinity decreased significantly. The MG MPs had a higher solubility, and was about 4.26, 2.1 and 2.5 times than that of free MG in water, artificial gastric juice (AGJ) and artificial intestinal juice (AIJ), respectively. The dissolution rate of the MG MPs were also obviously higher than that of free MG. Furthermore, the bioavailability of the MG MPs in vivo was about 2.07 times higher than that of the free MG, and its antioxidant capacity was also much higher than that of free MG, which was close to vitamin C.

7.
Phytomedicine ; 59: 152921, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31055231

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with poor prognosis. Various chemotherapeutics are used in treatment of HCC, but most of them have significant toxicity to patients. Thus, it is urgently needed to develop new therapeutic strategies to achieve high specificity and tolerable adverse effects. As a natural polyphenol, ellagic acid (EA) demonstrates inhibitory effects in cancers. PURPOSE: The goal of the present study to investigate the anticancer activity of EA with a focus on its stimulating effects on doxorubicin hydrochloride (DOX) and cisplatin (DDP) in HCC treatment. METHODS: HepG2, SMMC-7721 and HL-7702 cells were treated with EA, DOX, DDP or their combinations. Cell viability and apoptosis were examined to evaluate the cytotoxicity of these treatments. Western blot analysis and immunofluorescent assays were used to determine expression of genes related to the mitochondrial apoptosis pathway. To assess the anticancer activities and systemic toxicity of EA, DOX and EA+DOX treatments, a xenograft mouse model with inoculated HepG2 cells was employed, followed by immunohistochemical and histopathological evaluation. RESULTS: EA could both markedly potentiate anticancer activities of DOX and DDP to HCC HepG2 and SMMC-7721 cells, and reduce their cytotoxicity to normal liver HL-7702 cells. EA and its combination with DOX or DDP induced cell apoptosis through a pathway mediated by mitochondrial cytochrome c release. In nude mice, EA combination with a relatively low dosage of DOX effectively inhibited tumor growth without causing cardiotoxicity observed in mice treated by a high dosage of DOX. CONCLUSION: We discovered that EA synergistically potentiated DOX and DDP in suppressing HCC with significantly reduced side effects and this may represent a novel strategy in HCC therapies with both high anticancer efficiencies and low systemic toxicity in patients.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Ácido Elágico/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Cardiotoxicidade , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais , Fitoterapia
8.
Iran J Pharm Res ; 18(1): 168-182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31089353

RESUMO

In this study, a novel mesoporous silica nanoparticles drug carrier contributes to improving the solubility, dissolution, and the oral bioavailability of apigenin (AP). The apigenin of solid dispersion of mesoporous silica nanoparticles (AP-MSN) was prepared by physical absorption method and also, in-vitro drug release and in-vivo bioavailability performance were evaluated. Based on its solubility, the AP-MSN solid dispersion was prepared at the weight ratio of 1:1 to obtain the optimum solubility. The loading efficiency (LE), encapsulation efficiency (EE), and solubility of AP-MSN solid dispersion were 29.71%, 42.27%, and 25.11 µg/mL, respectively. SEM, TEM, BET, FTIR, XRD, DSC, and TG were also carried out. These results demonstrated that AP was good absorbed into the pores of MSN through physical absorption effect of MSN. The DMF residues of AP-MSN solid dispersion meet the ICH requirements. It was vital that the AP-MSN solid dispersion behaved well in-vitro and the accumulative release of AP-MSN solid dispersion was 2.37 times higher than that of raw AP. In-vivo study, the AP area under curve0-t was 8.32 times higher for the AP-MSN solid dispersion than that of raw AP, which indicated that the bioavailability of AP-MSN solid dispersion was greatly improved. Therefore, the prepared AP-MSN solid dispersion presents potential as a novel oral therapeutic agent formulation for clinical application.

9.
Int J Biol Macromol ; 132: 213-221, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30926500

RESUMO

As iron supplement, the antioxidant activities of APS-iron (III) complex were comprehensively evaluated by 5-axe cobweb charts, which indicated the APS-iron (III) complex had a certain antioxidant activity and been weaker than that of APS. The results of immunological activity experiments indicated the stimulation index increased with APS-iron (III) complex concentration increase. When the concentration of the APS-iron (III) complex was 50 µg/mL, the lymphocytes proliferation increased by 35.7% compared with APS. APS-iron (III) complex also had better complement fixing activity than APS, 0.589 mg/mL of which achieved 50% complement fixing activities. Through the iron supplement experiments on iron-deficiency anemia mouse model, we found the APS-iron (III) complex faster increased hemoglobin concentration, SOD, CAT and faster decreased MDA to the normal level than Niferex and ferrous sulfate. Histological results revealed that the tissue sections were clear without obvious pathological changes and bone marrow had most hematopoietic cells from APS-iron (III) complex rat group, which also proved the APS-iron (III) complex had no significant side effects. Therefore, APS-iron (III) complex may be developed as a multifunctional iron supplement for clinical application.


Assuntos
Anemia Ferropriva/imunologia , Anemia Ferropriva/metabolismo , Astragalus propinquus/química , Complexos de Coordenação/farmacologia , Ferro/química , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/química , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Ratos , Ratos Wistar
10.
Artif Cells Nanomed Biotechnol ; 47(1): 610-621, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30831030

RESUMO

With the purpose of improving the water solubility and oral bioavailability, ursolic acid nanoparticles (UANs) were prepared by the emulsion solvent evaporation method, and the nanosuspension was freeze-dried into powder. The optimal conditions for preparing nanoparticles were screened out using single-factor experiment. Take advantage of the optimal conditions, UA nanoemulsion had mean particle size (MPS) of 69.7 ± 15.6 nm and polydispersity index value (PI) of 0.005. The MPS of UA nanosuspension was gained at 100.2 ± 12.1 nm (PI = 0.005), after the organic solvent was removed by rotary evaporator. Finally, UANs possessing an MPS of 157.5 ± 28.0 nm (PI = 0.005) and zeta potential of 20.33 ± 1.67 mV were obtained after freeze-dried. UANs were investigated using SEM, XRD, DSC, TGA and further explored their equilibrium solubility, dissolution rate, solvent residue analysis, cellular antioxidant activity and oral bioavailability. All the results above showed that UA in UANs was in the amorphous state. The result of solubility test figured that the equilibrium solubility of UANs was 13.48 times in simulated gastric fluid (SGF), 11.79 times in simulated intestinal fluid (SIF) and 23.99 times in deionized water than raw UA. Accordingly, the dissolution rate of UANs in SGF and SIF had an apparent enhancement. The oral bioavailability of UANs increased 2.68 times than raw UA. UANs improved antioxidant activity toward cells compared with raw UA, and EC50 of UANs reduced 37.5 times than raw UA. The residual contents of trichloromethane and ethanol were separated up to the mustard of the ICH limit for class III and class II solvents. The results above indicated that UANs possesses a value of application on enhancement oral bioavailability.


Assuntos
Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacocinética , Solventes/química , Triterpenos/química , Triterpenos/farmacocinética , Administração Oral , Disponibilidade Biológica , Emulsões , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/farmacologia , Poloxâmero/química , Pressão , Solubilidade , Propriedades de Superfície , Triterpenos/administração & dosagem , Triterpenos/farmacologia , Volatilização , Água/química , Ácido Ursólico
11.
Int J Nanomedicine ; 13: 5469-5483, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271141

RESUMO

BACKGROUND: Honokiol is a bioactive lignanoid and has been utilized in traditional Chinese medicine for a long time. It exhibits several pharmacological properties, such as anticancer effects, anti-inflammatory effects, and antianxiety effects. However, the poor aqueous solubility of honokiol has impeded clinical applications. MATERIALS AND METHODS: In the present study, we adopted the liquid antisolvent precipitation (LAP) technique to prepare nanoparticles of honokiol for enhancement of solubility and bioavailability. Moreover, the honokiol nanoparticles obtained were investigated and evaluated in terms of morphology, physicochemical properties, saturation solubility, dissolution in vitro, bioavailability in vivo, toxicity, and the inhibitory effect on growth of HepG2 cells. RESULTS: The obtained honokiol nanoparticles existed nearly in spherical shape and could be turned into amorphous structure by the LAP method. Moreover, the solubility of the honokiol nanoparticles was extremely higher than that of free honokiol, and the nanoparticle dissolution rate was also higher than that of free honokiol, which was about 20.41 times and 26.2 times than that of free honokiol in artificial gastric juice and in artificial intestinal juice. The area under the curve [AUC(0-t)] value of honokiol nanoparticles was about 6.52 times greater than that of free honokiol; therefore, the honokiol nanoparticles had a higher bioavailability than free honokiol but were innoxious to the organs of rats. Additionally, the honokiol nanoparticles exhibited a higher inhibition of HepG2 cells due to their lower IC50 compared to free honokiol. CONCLUSION: Honokiol nanoparticles have high solubility and bioavailability, and can become a new oral drug formulation and produce a better response for its clinical applications.


Assuntos
Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/farmacocinética , Precipitação Química , Lignanas/farmacologia , Lignanas/farmacocinética , Nanopartículas/química , Solventes/química , Administração Oral , Animais , Disponibilidade Biológica , Compostos de Bifenilo/sangue , Compostos de Bifenilo/química , Varredura Diferencial de Calorimetria , Feminino , Células Hep G2 , Humanos , Lignanas/sangue , Lignanas/química , Nanopartículas/ultraestrutura , Especificidade de Órgãos , Tamanho da Partícula , Ratos Sprague-Dawley , Solubilidade , Termogravimetria , Testes de Toxicidade , Difração de Raios X
12.
Int J Biol Macromol ; 118(Pt B): 1438-1448, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30170361

RESUMO

Selenium is an essential trace element in human body. Se-deficiency is common phenomenon in all over the world, which severely harms the health of organism and causes the etiology of many chronic, degenerative diseases, such as atherosclerosis, arthritis, cancers, hypoimmunity, hypothyroidism and viral diseases. So, the research on preparation of Se-supplementing with the effective, safe and high Se content was imperative. In this study, Se-enriched Astragalus polysaccharide nanoparticles (Se-APS) were prepared by the previous optimization experimental conditions, as follows: reaction temperature 80.5 °C, pH 7.8, ratio of catalyst to APS 0.57:1.0 g·g-1, and reaction time 62 min. The Se content of Se-APS was as high as 13.42 ±â€¯0.37%, characterized by energy spectrometer, thermogravimetry, X-ray diffraction, fourier transform infrared, particle size, zeta potential and atomic force. Se release of the Se-APS in vitro followed the Higuchi's kinetics model and exhibited the basically same release pattern in artificial gastric juice (pH 2.0), artificial intestinal juice (pH 8.0) and PBS (pH 7.4). The proliferation of T-lymphocytes with Se-APS incubation increased at an average of 13.87%, comparing with APS. It could not only enhance the proliferation of T-lymphocytes, but also effectively suppress malignant proliferation of HepG2 cells and reduce cell migration and invasion. We prepared a novel water-soluble Se-APS by using a chelating method, which was promising as a novel Se supplements with high Se content and good bioactivity.


Assuntos
Antineoplásicos/química , Antioxidantes/química , Astrágalo/química , Nanopartículas/química , Polissacarídeos/química , Selênio/química , Água/química , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Células Hep G2 , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Tamanho da Partícula , Polissacarídeos/farmacologia , Solubilidade
13.
Oncol Lett ; 16(3): 2911-2920, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30127879

RESUMO

Docetaxel (DTX) is currently used as a first- or second-line drug treatment for patients with lung cancer, however, it is less effective for the treatment of patients with bone metastasis of lung cancer. This is primarily due to the fact that docetaxel is nonspecific. In the present study, docosahexaenoic acid (DHA) was selected as a tumor-targeting ligand, and DHA-conjugated DTX (DTX-DHA) was prepared for inhibiting lung cancer metastasis to bone. The anti-cancer activity assay revealed that DTX-DHA exhibited a similar antitumor efficacy to DTX in vitro. The maximum tolerated dose of DTX-DHA was increased compared with that of DTX. The present study results indicated that DTX-DHA exhibited an improved inhibition efficacy of lung cancer metastasis to bone in comparison with DTX in vivo. Encouragingly, the mean survival time of the DTX-DHA group (30.60 days) was increased compared with the DTX group (26.10 days; P<0.01). Furthermore, the results of cell migration and osteoclast-induced formation assays suggested that DTX-DHA inhibited lung cancer metastasis to bone primarily by affecting lung cancer cell migration. These results indicate that DTX-DHA may exhibit a potential therapeutic effect against lung cancer metastasis to bone.

14.
BMC Genomics ; 19(1): 508, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29966514

RESUMO

BACKGROUND: The medicinal plant, Catharanthus roseus (C. roseus), accumulates a wide range of terpenoid indole alkaloids (TIAs). Ethylene (ET) and methyl-jasmonate (MeJA) were previously reported as effective elicitors for the production of various valuable secondary metabolites of C. roseus, while a few ET or MeJA induced transcriptomic research is yet reported on this species. In this study, the de-novo transcriptome assembly of C. roseus is performed by using the next-generation sequencing technology. RESULTS: The result shows that phenolic biosynthesis genes respond specifically to ET in leaves, monoterpenoid biosynthesis genes respond specifically to MeJA in roots. By screening the database, 23 ATP-binding cassette (ABC) transporter partial sequences are identified in C. roseus. On this basis, more than 80 key genes that encode key enzymes (namely TIA pathway, transcriptional factor (TF) and candidate ABC transporter) of alkaloid synthesis in TIA biosynthetic pathways are chosen to explore the integrative responses to ET and MeJA at the transcriptional level. Our data indicated that TIA accumulation is strictly regulated by the TF ethylene responsive factor (ERF) and bHLH iridoid synthesis 1 (BIS1). The heatmap, combined with principal component analysis (PCA) of C. roseus, shows that ERF co-expression with ABC2 and ABC8 specific expression in roots affect the root-specific accumulation of vinblastine in C. roseus. On the contrast, BIS1 activities follow a similar pattern of ABC3 and CrTPT2 specific expression in leaves, which affects the leaf-specific accumulation of vindoline in C. roseus. CONCLUSIONS: Results presented above illustrate that ethylene has a stronger effect than MeJA on TIA induction at both transcriptional and metabolite level. Furthermore, meta-analysis reveals that ERF and BIS1 form a positive feedback loop connecting two ABC transporters respectively and are actively involved in TIAs responding to ET and MeJA in C. roseus.


Assuntos
Acetatos/farmacologia , Catharanthus/genética , Ciclopentanos/farmacologia , Etilenos/farmacologia , Oxilipinas/farmacologia , Alcaloides de Triptamina e Secologanina/metabolismo , Transcriptoma/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Catharanthus/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Análise de Componente Principal , Alcaloides de Triptamina e Secologanina/química
15.
Chem Cent J ; 12(1): 37, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29619619

RESUMO

BACKGROUND: In the present study, tara seed oil was obtained by supercritical fluid extraction and used to investigate the antioxidant strength of carnosic acid (CA) compared with conventional synthetic antioxidants. METHODS: The antioxidants were added to the tara seed oil at 0.2 mg of antioxidant per gram of oil. The samples were then submitted to at 60 °C 15 days for an accelerated oxidation process, with samples taken regularly for analysis. After oxidation, the samples were analyzed to determine the peroxide value, thiobarbituric acid reactive substances, conjugated diene content, and free fatty acid content. CA was investigated at three purity levels (CA20, CA60, CA99), and compared with three synthetic antioxidants (butylatedhydroxyanisole, butylatedhydroxytoluene, and tert-butylhydroquinone). RESULTS: The oxidation indicators showed that CA was a strong antioxidant compared to the synthetic antioxidants. The antioxidant activities decreased in the order: tert-butylhydroquinone > CA99 > CA60 > CA20 > butylatedhydroxyanisole > butylatedhydroxytoluene. These results show that CA could be used to replace synthetic antioxidants in oil products, and should be safer for human consumption and the environment.

16.
Molecules ; 22(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165376

RESUMO

Vitexin, a natural flavonoid found in many medicinal plants, is well known for its rich pharmacological activities. However, the poor water solubility of vitexin has limited its therapeutic application. The aim of this study was to prepare the nanoparticles of vitexin by combining the antisolvent precipitation (ASP) and high pressure homogenization (HPH) approaches followed by lyophilization for improving the dissolution rate of this poorly water-soluble drug. The effects of main factors influencing the mean particle size (MPS) of vitexin were investigated and optimized. Under optimum conditions, vitexin nanosuspensions with an MPS of 80.5 nm were obtained and then lyophilized to form nanoparticles. The obtained vitexin nanoparticles were further characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), mass spectrometry (MS), X-ray powder diffraction (XRPD), gas chromatography (GC) and dissolution testing. The results showed that the nanoparticles of vitexin were converted into an amorphous form, with its chemical structure unchanged. Additionally, the residual dimethyl sulfoxide (DMSO) is lower than the International Conference on Harmonization (ICH) limit for class 3 solvents. The dissolution rate of processed vitexin was significantly higher (5.58-fold) than that of raw drug. Overall, the combinative process we developed is an effective way to produce vitexin nanoparticles with markedly enhanced dissolution rate.


Assuntos
Apigenina/química , Nanopartículas/química , Análise de Variância , Cromatografia Líquida , Liofilização , Espectrometria de Massas , Estrutura Molecular , Nanopartículas/ultraestrutura , Nanotecnologia , Solubilidade , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Raios X
17.
Drug Deliv ; 24(1): 1713-1720, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29115900

RESUMO

The present work aimed to apply the liquid antisolvent precipitation (LAP) method for preparing the apigenin nanoparticles and thereby improving the solubility and bioavailability of apigenin. The different experimental parameters on particle size were optimized through central composite design (CCD) using the Design-Expert® software. Under the optimum conditions, the particle size of the apigenin nanosuspension was about 159.2 nm. In order to get apigenin nanoparticles, the freeze-drying method was selected and the mannitol was used as a cryoprotectant. Then the solid state properties of the apigenin nanoparticles were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermo gravimetric (TG), and X-ray diffraction (XRD). The results obtained displayed that the apigenin nanoparticles exhibited near-spherical shape and could be transformed into an amorphous form. In addition, the dissolving test, the bioavailability in rats, and the antitumor activity were also studied. The experimental results showed that the solubility of the apigenin nanoparticles were about 29.61 times and 64.81 times of raw apigenin in artificial gastric juice and in artificial intestinal juice, respectively, and the apigenin nanoparticles showed higher dissolution rates compared to raw apigenin, and was about 6.08 times and 6.14 times than that of raw apigenin in artificial gastric juice and in artificial intestinal juice. The oral bioavailability of apigenin nanoparticles was about 4.96 times higher than that of the raw apigenin, but the apigenin nanoparticles had no toxic effect on the organs of rats. In addition, the apigenin nanoparticles had a higher inhibition to HepG2 cells by lower IC50 than that of raw apigenin.


Assuntos
Antineoplásicos/química , Apigenina/química , Nanopartículas/química , Solventes/química , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria/métodos , Linhagem Celular Tumoral , Precipitação Química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Liofilização/métodos , Células Hep G2 , Humanos , Microscopia Eletrônica de Varredura/métodos , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Solubilidade/efeitos dos fármacos , Difração de Raios X/métodos
18.
Curr Med Chem ; 24(34): 3681-3697, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714385

RESUMO

BACKGROUND: Natural medicine monomers (NMMs) isolated from plants have been recognized for their roles in treating different human diseases including cancers. Many NMMs exhibit effective anti-cancer activities and can be used as drugs or adjuvant agents to enhance the efficacy of chemotherapy and radiotherapy. Some NMMs, such as paclitaxel and camptothecin, have been extensively studied for decades and are now used as anti-cancer medicines due to their remarkable curative effects, such as inhibiting cancer cell proliferation and metastasis, and inducing cell death and differentiation. METHODS: After extensively reviewing papers related to NMM studies in cancers, we grouped NMMs into six categories based on their chemical structures. We summarized the anti-cancer activities of these NMMs and current knowledge of molecular mechanisms for them to exert their functions. RESULTS AND CONCLUSION: Many NMMs from plants can effectively inhibit cancer cells with low or tolerable toxicity to patients. Some NMMs have been well-characterized for their anti-cancer activities and have already been used as clinical drugs or adjuvant agents; however, the mechanisms underlying the cancer suppressive activities of most NMMs remain poorly understood. Many NMMs can be used as initial structural scaffolds to design and develop novel therapeutics against cancers. This review summarizes reports related to signaling pathways mediated by different NMMs and can provide a theoretical basis for clinical application and new drug development of NMMs.


Assuntos
Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Alcaloides/química , Alcaloides/uso terapêutico , Alcaloides/toxicidade , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Flavonoides/química , Flavonoides/uso terapêutico , Flavonoides/toxicidade , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/uso terapêutico , Hidroxibenzoatos/toxicidade , Plantas/química , Plantas/metabolismo , Quinonas/química , Quinonas/uso terapêutico , Quinonas/toxicidade , Saponinas/química , Saponinas/uso terapêutico , Saponinas/toxicidade , Terpenos/química , Terpenos/uso terapêutico , Terpenos/toxicidade
19.
J Sep Sci ; 40(15): 3100-3113, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28590026

RESUMO

Proanthocyanidins were separated for the first time from Cinnamomum longepaniculatum leaves. An experiment-based extraction strategy was used to research the efficiency of an ultrasound-assisted method for proanthocyanidins extraction. The Plackett-Burman design results revealed that the ultrasonication time, ultrasonic power and liquid/solid ratio were the most significant parameters among the six variables in the extraction process. Upon further optimization of the Box-Behnken design, the optimal conditions were obtained as follows: extraction temperature, 100°C; ethanol concentration, 70%; pH 5; ultrasonication power, 660 W; ultrasonication time, 44 min; liquid/solid ratio, 20 mL/g. Under the obtained conditions, the extraction yield of the proanthocyanidins using the ultrasonic-assisted method was 7.88 ± 0.21 mg/g, which is higher than that obtained using traditional methods. The phloroglucinolysis products of the proanthocyanidins, including the terminal units and derivatives from the extension units, were tentatively identified using a liquid chromatography with tandem mass spectrometry analysis. Cinnamomum longepaniculatum proanthocyanidins have promising antioxidant and anti-nutritional properties. In summary, an ultrasound-assisted method in combination with a response surface experimental design is an efficient methodology for the sufficient isolation of proanthocyanidins from Cinnamomum longepaniculatum leaves, and this method could be used for the separation of other bioactive compounds.


Assuntos
Cinnamomum/química , Folhas de Planta/química , Proantocianidinas/isolamento & purificação , Ultrassom , Antioxidantes/isolamento & purificação , Etanol
20.
Mater Sci Eng C Mater Biol Appl ; 76: 73-80, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482584

RESUMO

This study provided a facile, one-step hydrothermal method to synthesize stable Ag colloid in aqueous solution by utilizing chitosan as both reductant and stabilizer. The formation of chitosan-functionalized Ag nanoparticles was verified by UV-Vis, FTIR, TEM, AFM and XRD measurements. FTIR results revealed that the primary amine groups and amide groups of chitosan have specific interactions with the surface of Ag nanoparticles. The average diameter of the Ag nanoparticles is 10.0±5.4nm as determined by TEM. Ag nanoparticles are highly crystalline as revealed by HR-TEM and XRD measurements. The size and shape of Ag nanoparticles are also found to depend on the pH condition in the synthesis. Ag nanoparticles were the main products at pH5.0 whereas large Ag nanotriangle and truncated triangular nanoplate were dominant at pH4.0 in the synthesis. Due to its monodispersity and good stability, the chitosan-functionalized Ag colloid synthesized at pH5.0 was further tested for its antibacterial activities against gram-positive bacteria, gram-negative bacteria and fungus. The results of zone of inhibition, inhibition ratio and SEM characterization revealed that chitosan-functionalized Ag nanoparticles have great bactericidal efficiency against both bacteria and fungus.


Assuntos
Nanopartículas Metálicas , Antibacterianos , Bactérias , Quitosana , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...