Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37511016

RESUMO

Mammalian SWI/SNF (mSWI/SNF) complexes are ATP-dependent chromatin remodeling enzymes that are critical for normal cellular functions. mSWI/SNF enzymes are classified into three sub-families based on the presence of specific subunit proteins. The sub-families are Brm- or Brg1-associated factor (BAF), ncBAF (non-canonical BAF), and polybromo-associated BAF (PBAF). The biological roles for the different enzyme sub-families are poorly described. We knocked down the expression of genes encoding unique subunit proteins for each sub-family, Baf250A, Brd9, and Baf180, which mark the BAF, ncBAF, and PBAF sub-families, respectively, and examined the requirement for each in myoblast differentiation. We found that Baf250A and the BAF complex were required to drive lineage-specific gene expression. KD of Brd9 delayed differentiation. However, while the Baf250A-dependent gene expression profile included myogenic genes, the Brd9-dependent gene expression profile did not, suggesting Brd9 and the ncBAF complex indirectly contributed to differentiation. Baf180 was dispensable for myoblast differentiation. The results distinguish between the roles of the mSWI/SNF enzyme sub-families during myoblast differentiation.


Assuntos
Cromatina , Proteínas Cromossômicas não Histona , Humanos , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Montagem e Desmontagem da Cromatina/genética , Mioblastos/metabolismo , Mamíferos/metabolismo
2.
Phytother Res ; 35(8): 4092-4110, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33720455

RESUMO

Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.


Assuntos
Flavonas , Isoflavonas , Neoplasias , Apoptose , Biomarcadores , Ensaios Clínicos como Assunto , Flavonas/farmacologia , Genisteína , Humanos , Isoflavonas/farmacologia , Neoplasias/tratamento farmacológico
3.
Biomolecules ; 10(12)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334030

RESUMO

Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial-mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.


Assuntos
Transição Epitelial-Mesenquimal , Leptina/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
4.
Endocr Connect ; 8(11): 1539-1552, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31671408

RESUMO

Breast cancer is the most common invasive neoplasia, and the second leading cause of the cancer deaths in women worldwide. Mammary tumorigenesis is severely linked to obesity, one potential connection is leptin. Leptin is a hormone secreted by adipocytes, which contributes to the progression of breast cancer. Cell migration, metalloproteases secretion, and invasion are cellular processes associated with various stages of metastasis. These processes are regulated by the kinases FAK and Src. In this study, we utilized the breast cancer cell lines MCF7 and MDA-MB-231 to determine the effect of leptin on FAK and Src kinases activation, cell migration, metalloprotease secretion, and invasion. We found that leptin activates FAK and Src and induces the localization of FAK to the focal adhesions. Interestingly, leptin promotes the activation of FAK through a Src- and STAT3-dependent canonical pathway. Specific inhibitors of FAK, Src and STAT3 showed that the effect exerted by leptin in cell migration in breast cancer cells is dependent on these proteins. Moreover, we established that leptin promotes the secretion of the extracellular matrix remodelers, MMP-2 and MMP-9 and invasion in a FAK and Src-dependent manner. Our findings strongly suggest that leptin promotes the development of a more aggressive invasive phenotype in mammary cancer cells.

5.
Cells ; 8(10)2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554180

RESUMO

Leptin is one of the main adipokines secreted in breast tissue. Leptin promotes epithelial-mesenchymal transition (EMT), cell migration and invasion in epithelial breast cells, leading to tumor progression. Although, the molecular mechanisms that underlie these events are not fully understood, the activation of different signaling pathways appears to be essential. In this sense, the effects of leptin on the activation of kinases like Src and FAK, which regulate signaling pathways that activate the EMT program, are not completely described. Therefore, we investigated the involvement of these kinases using an in vitro model for leptin-induced EMT process in the non-tumorigenic MCF10A cell line. To this end, MCF10A cells were stimulated with leptin, and Src and FAK activation was assessed. Specific events occurring during EMT were also evaluated in the presence or absence of the kinases' chemical inhibitors PP2 and PF-573228. For instance, we tested the expression and subcellular localization of the EMT-related transcription factors Twist and ß-catenin, by western blot and immunofluorescence. We also evaluated the secretion and activation of matrix metalloproteases (MMP-2 and MMP-9) by gelatin zymography. Invasiveness properties of leptin-stimulated cells were determined by invadopodia formation assays, and by the Transwell chamber method. Our results showed that leptin promotes EMT through Src and FAK activation, which leads to the secretion and activation of MMP-2 and MMP-9, invadopodia formation and cell invasion in MCF10A cells. In conclusion, our data suggest that leptin promotes an increase in the expression levels of Twist and ß-catenin, the secretion of MMP-2, MMP-9, the invadopodia formation and invasion in MCF10A cells in a Src and FAK-dependent manner.


Assuntos
Mama/patologia , Leptina/farmacologia , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Regulação para Cima , beta Catenina/metabolismo , Mama/citologia , Mama/efeitos dos fármacos , Mama/metabolismo , Linhagem Celular , Movimento Celular , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Feminino , Quinase 1 de Adesão Focal/metabolismo , Humanos , Pirimidinas/farmacologia , Quinolonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Quinases da Família src/metabolismo
6.
Int J Mol Sci ; 20(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200510

RESUMO

Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.


Assuntos
Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/química , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Sistema de Sinalização das MAP Quinases , Neoplasias/genética , Neoplasias/patologia
7.
Int J Clin Exp Pathol ; 10(10): 10334-10342, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31966368

RESUMO

Epithelial-mesenchymal transition (EMT) is a biological process involved in different steps of tumor progression and metastasis of breast cancer cells. Epidemiological studies suggest a link between obesity and the progression of breast cancer. Leptin is an adipocyte-secreted hormone which can promote cell migration and invasion as part of EMT in breast cancer cells. We investigated the effect of leptin on expression of EMT markers in MCF10A cells, as well as, the role of FAK and ERK in this process. We found that leptin induces morphological changes from an epithelial phenotype towards a mesenchymal phenotype and promotes cell migration in MCF10A cells. Moreover, leptin induces an increase in vimentin expression, changes in the cellular localization of E-cadherin and increase in FAK and ERK phosphorylation. Furthermore, using FAK and ERK chemical inhibitors we show that leptin regulates EMT markers in a FAK and ERK dependent manner. In conclusion, leptin promotes vimentin expression and cell migration in a FAK and ERK dependent pathway in the non-tumorigenic epithelial cell line MCF10A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...