Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(41)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38942011

RESUMO

We consider magnetic Weyl semimetals. First of all we review relation of intrinsic anomalous Hall conductivity, band contribution to intrinsic magnetic moment, and the conductivity of chiral separation effect (CSE) to the topological invariants written in terms of the Wigner transformed Green functions (with effects of interaction and disorder taken into account). Next, we concentrate on the CSE. The corresponding bulk axial current is accompanied by the flow of the states in momentum space along the Fermi arcs. Together with the bulk CSE current this flow forms closed Weyl orbits. Their detection can be considered as experimental discovery of chiral separation effect. Previously it was proposed to detect Weyl orbits through the observation of quantum oscillations (Potteret al2014Nat. Commun.55161). We propose the alternative way to detect existence of Weyl orbits through the observation of their contributions to Hall conductance.

2.
J Phys Condens Matter ; 33(35)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34134095

RESUMO

We discuss anomalous fractional quantum Hall effect that exists without external magnetic field. We propose that excitations in such systems may be described effectively by non-interacting particles with the Hamiltonians defined on the Brillouin zone with a branch cut. Hall conductivity of such a system is expressed through the one-particle Green function. We demonstrate that for the Hamiltonians of the proposed type this expression takes fractional values times Klitzing constant. Possible relation of the proposed construction with degeneracy of ground state is discussed as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...