Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Math Phys Eng Sci ; 477(2255): 20210507, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35153597

RESUMO

We study a quantum trimer of coupled two-level systems beyond the single-excitation sector, where the coherent coupling constants are ornamented by a complex phase. Accounting for losses and gain in an open quantum systems approach, we show how the mean populations of the states in the system crucially depend on the accumulated phase in the trimer. Namely, for non-trivial accumulated phases, the population dynamics and the steady states display remarkable non-reciprocal behaviour in both the singly and doubly excited manifolds. Furthermore, while the directionality of the resultant chiral current is primarily determined by the accumulated phase in the loop, the sign of the flow may also change depending on the coupling strength and the amount of gain in the system. This directionality paves the way for experimental studies of chiral currents at the nanoscale, where the phases of the complex hopping parameters are modulated by magnetic or synthetic magnetic fields.

2.
Phys Rev Lett ; 123(1): 013601, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386390

RESUMO

Heisenberg's uncertainty principle implies that the quantum vacuum is not empty but fluctuates. These fluctuations can be converted into radiation through nonadiabatic changes in the Hamiltonian. Here, we discuss how to control this vacuum radiation, engineering a single-photon emitter out of a two-level system (2LS) ultrastrongly coupled to a finite-band waveguide in a vacuum state. More precisely, we show the 2LS nonlinearity shapes the vacuum radiation into a non-Gaussian superposition of even and odd cat states. When the 2LS bare frequency lays within the band gaps, this emission can be well approximated by individual photons. This picture is confirmed by a characterization of the ground and bound states, and a study of the dynamics with matrix-product states and polaron Hamiltonian methods.

3.
Dalton Trans ; 45(42): 16682-16693, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711709

RESUMO

A proposal for a magnetic quantum processor that consists of individual molecular spins coupled to superconducting coplanar resonators and transmission lines is carefully examined. We derive a simple magnetic quantum electrodynamics Hamiltonian to describe the underlying physics. It is shown that these hybrid devices can perform arbitrary operations on each spin qubit and induce tunable interactions between any pair of them. The combination of these two operations ensures that the processor can perform universal quantum computations. The feasibility of this proposal is critically discussed using the results of realistic calculations, based on parameters of existing devices and molecular qubits. These results show that the proposal is feasible, provided that molecules with sufficiently long coherence times can be developed and accurately integrated into specific areas of the device. This architecture has an enormous potential for scaling up quantum computation thanks to the microscopic nature of the individual constituents, the molecules, and the possibility of using their internal spin degrees of freedom.

4.
Phys Rev Lett ; 113(26): 263604, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615332

RESUMO

The scattering of a flying photon by a two-level system ultrastrongly coupled to a one-dimensional photonic waveguide is studied numerically. The photonic medium is modeled as an array of coupled cavities and the whole system is analyzed beyond the rotating wave approximation using matrix product states. It is found that the scattering is strongly influenced by the single- and multiphoton dressed bound states present in the system. In the ultrastrong coupling regime a new channel for inelastic scattering appears, where an incident photon deposits energy into the qubit, exciting a photon-bound state, and escaping with a lower frequency. This single-photon nonlinear frequency conversion process can reach up to 50% efficiency. Other remarkable features in the scattering induced by counterrotating terms are a blueshift of the reflection resonance and a Fano resonance due to long-lived excited states.

5.
J Chem Phys ; 138(10): 104105, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23514463

RESUMO

We study the thermal escape problem in the moderate-to-high and high damping regime of a system with a parabolic barrier. We present a formula that matches our numerical results accounting for finite barrier effects, and compare it with previous works. We also show results for the full damping range. We quantitatively study some aspects on the relation between mean first passage time and the definition of an escape rate. To finish, we apply our results and considerations in the framework of force spectroscopy problems. We study the differences on the predictions using the different theories and discuss the role of γF[over dot] as the relevant parameter at high damping.

6.
Phys Rev Lett ; 111(24): 243602, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483659

RESUMO

The time and space resolved dynamics of a qubit with an Ohmic coupling to propagating 1D photons is studied, from weak coupling to the ultrastrong coupling regime. A nonperturbative study based on matrix product states shows the following results, (i) The ground state of the combined systems contains excitations of both the qubit and the surrounding bosonic field. (ii) An initially excited qubit equilibrates through spontaneous emission to a state, which under certain conditions is locally close to that ground state, both in the qubit and the field. (iii) The resonances of the combined qubit-photon system match those of the spontaneous emission process and also the predictions of the adiabatic renormalization [A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987)]. Finally, nonperturbative ab initio calculations show that this physics can be studied using a flux qubit galvanically coupled to a superconducting transmission line.

7.
J Chem Phys ; 137(22): 22A533, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23249070

RESUMO

At non-zero temperature and when a system has low-lying excited electronic states, the ground-state Born-Oppenheimer approximation breaks down and the low-lying electronic states are involved in any chemical process. In this work, we use a temperature-dependent effective potential for the nuclei which can accommodate the influence of an arbitrary number of electronic states in a simple way, while at the same time producing the correct Boltzmann equilibrium distribution for the electronic part. With the help of this effective potential, we show that thermally activated low-lying electronic states can have a significant effect in molecular properties for which electronic excitations are oftentimes ignored. We study the thermal expansion of the Manganese dimer, Mn(2), where we find that the average bond length experiences a change larger than the present experimental accuracy upon the inclusion of the excited states into the picture. We also show that, when these states are taken into account, reaction-rate constants are modified. In particular, we study the opening of the ozone molecule, O(3), and show that in this case the rate is modified as much as a 20% with respect to the ground-state Born-Oppenheimer prediction.


Assuntos
Teoria Quântica , Temperatura , Dimerização , Cinética , Manganês/química , Ozônio/química , Termodinâmica
8.
Phys Rev Lett ; 107(11): 117203, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-22026699

RESUMO

We show that a chemically engineered structural asymmetry in [Tb2] molecular clusters renders the two weakly coupled Tb3+ spin qubits magnetically inequivalent. The magnetic energy level spectrum of these molecules meets then all conditions needed to realize a universal CNOT quantum gate. A proposal to realize a SWAP gate within the same molecule is also discussed. Electronic paramagnetic resonance experiments confirm that CNOT and SWAP transitions are not forbidden.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(3 Pt 2B): 036613, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15903611

RESUMO

We study numerically synchronization phenomena of mobile discrete breathers in dissipative nonlinear lattices periodically forced. When varying the driving intensity, the breather velocity generically locks at rational multiples of the driving frequency. In most cases, the locking plateau coincides with the linear stability domain of the resonant mobile breather and desynchronization occurs by the regular appearance of type-I intermittencies. However, some plateaus also show chaotic mobile breathers with locked velocity in the locking region. The addition of a small subharmonic driving tames the locked chaotic solution and enhances the stability of resonant mobile breathers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...