Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 18(6): 3651-3660, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29792713

RESUMO

Solid-state quantum emitters embedded in a semiconductor crystal environment are potentially scalable platforms for quantum optical networks operated at room temperature. Prominent representatives are nitrogen-vacancy (NV) centers in diamond showing coherent entanglement and interference with each other. However, these emitters suffer from inefficient optical outcoupling from the diamond and from fluctuations of their charge state. Here, we demonstrate the implementation of regular n-type gallium nitride nanowire arrays on diamond as photonic waveguides to tailor the emission direction of surface-near NV centers and to electrically control their charge state in a p-i-n nanodiode. We show that the electrical excitation of single NV centers in such a diode can efficiently replace optical pumping. By the engineering of the array parameters, we find an optical read-out efficiency enhanced by a factor of 10 and predict a lateral NV-NV coupling 3 orders of magnitude stronger through evanescently coupled nanowire antennas compared to planar diamond not covered by nanowires, which opens up new possibilities for large-scale on-chip quantum-computing applications.

2.
Beilstein J Nanotechnol ; 7: 1727-1735, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144522

RESUMO

In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres) in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e., by using aluminium as Schottky contact on a hydrogen terminated diamond surface. By changing the applied potential on the Schottky contact, we are able to actively switch single NV centres between all three charge states NV+, NV0 and NV- on a timescale of 10 to 100 ns, corresponding to a switching frequency of 10-100 MHz. This switching frequency is much higher than the hyperfine interaction frequency between an electron spin (of NV-) and a nuclear spin (of 15N or 13C for example) of 2.66 kHz. This high-frequency charge state switching with a planar diode structure would open the door for many quantum optical applications such as a quantum computer with single NVs for quantum information processing as well as single 13C atoms for long-lifetime storage of quantum information. Furthermore, a control of spectral emission properties of single NVs as a single photon emitters - embedded in photonic structures for example - can be realized which would be vital for quantum communication and cryptography.

3.
Nanomaterials (Basel) ; 6(11)2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28335345

RESUMO

Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) c-axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions.

4.
Langmuir ; 31(19): 5319-25, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25936368

RESUMO

Monosized (∼4 nm) diamond nanoparticles arranged on substrate surfaces are exciting candidates for single-photon sources and nucleation sites for ultrathin nanocrystalline diamond film growth. The most commonly used technique to obtain substrate-supported diamond nanoparticles is electrostatic self-assembly seeding using nanodiamond colloidal suspensions. Currently, monodisperse nanodiamond colloids, which have a narrow distribution of particle sizes centering on the core particle size (∼4 nm), are available for the seeding technique on different substrate materials such as Si, SiO2, Cu, and AlN. However, the self-assembled nanoparticles tend to form small (typically a few tens of nanometers or even larger) aggregates on all of those substrate materials. In this study, this major weakness of self-assembled diamond nanoparticles was solved by modifying the salt concentration of nanodiamond colloidal suspensions. Several salt concentrations of colloidal suspensions were prepared using potassium chloride as an inserted electrolyte and were examined with respect to seeding on SiO2 surfaces. The colloidal suspensions and the seeded surfaces were characterized by dynamic light scattering and atomic force microscopy, respectively. Also, the interaction energies between diamond nanoparticles in each of the examined colloidal suspensions were compared on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. From these investigations, it became clear that the appropriate salt concentration suppresses the formation of small aggregates during the seeding process owing to the modified electrostatic repulsive interaction between nanoparticles. Finally, monosized (<10 nm) individual diamond nanoparticles arranged on SiO2 surfaces have been successfully obtained.


Assuntos
Nanopartículas/química , Cloreto de Potássio/química , Dióxido de Silício/química , Coloides/química , Eletrólitos/química , Cinética , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície , Água/química
5.
Nanoscale Res Lett ; 7(1): 493, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22937992

RESUMO

The authors report single-photon emission from InGaAs quantum dots grown by droplet epitaxy on (100) GaAs substrates using a solid-source molecular beam epitaxy system at elevated substrate temperatures above 400°C without post-growth annealing. High-resolution micro-photoluminescence spectroscopy exhibits sharp excitonic emissions with lifetimes ranging from 0.7 to 1.1 ns. The coherence properties of the emitted photons are investigated by measuring the first-order field correlation function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...