Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 28(32): 6852-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27248832

RESUMO

Universal, giant and nonvolatile resistive switching is demonstrated for oxide tunnel junctions with ferroelectric PbZr0.2 Ti0.8 O3 , ferroelectric BaTiO3, and paraelectric SrTiO3 tunnel barriers. The effects are caused by reversible migration of oxygen vacancies between the tunnel barrier and bottom La2/3 Sr1/3 MnO3 electrode. The switching process, which is driven by large electric fields, is efficient down to a temperature of 5 K.

2.
Phys Rev Lett ; 115(23): 236804, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684135

RESUMO

Quantum aspects, such as electron tunneling between closely separated metallic nanoparticles, are crucial for understanding the plasmonic response of nanoscale systems. We explore quantum effects on the response of the conductively coupled metallic nanoparticle dimer. This is realized by stretching a nanorod, which leads to the formation of a narrowing atomic contact between the two nanorod ends. Based on first-principles time-dependent density-functional-theory calculations, we find a discontinuous evolution of the plasmonic response as the nanorod is stretched. This is especially pronounced for the intensity of the main charge-transfer plasmon mode. We show the correlation between the observed discontinuities and the discrete nature of the conduction channels supported by the formed atomic-sized junction.

3.
Faraday Discuss ; 178: 151-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25739465

RESUMO

The optical response of plasmonic nanogaps is challenging to address when the separation between the two nanoparticles forming the gap is reduced to a few nanometers or even subnanometer distances. We have compared results of the plasmon response within different levels of approximation, and identified a classical local regime, a nonlocal regime and a quantum regime of interaction. For separations of a few Ångstroms, in the quantum regime, optical tunneling can occur, strongly modifying the optics of the nanogap. We have considered a classical effective model, so called Quantum Corrected Model (QCM), that has been introduced to correctly describe the main features of optical transport in plasmonic nanogaps. The basics of this model are explained in detail, and its implementation is extended to include nonlocal effects and address practical situations involving different materials and temperatures of operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...