Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-11, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37585599

RESUMO

Qatar's population has been rapidly increasing in recent years, and the country's long-term vision, QNV 2030, aims to sustain this growth by transforming the country into a sustainable state. One aspect of this vision is to convert waste into value-added products, which will reduce the environmental and spatial burden associated with waste in Qatar, while contributing to a circular economy. This study describes methods for producing biochar and activated carbon (AC) from gas-to-liquids derived biosolids, cardboard waste and mixed samples using pyrolysis and activation techniques. The characterisation of products revealed that the yield of biochar samples was higher than AC, and that the pH of the biochar samples was more alkaline than the feed samples due to metals after pyrolysis and reduced acid surface functional groups. Proximate analysis of samples showed lowered moisture and enhanced ash in feeds upon pyrolysis and activation due to increased temperature with reduced volatile content. AC application to water treatment is considered a potential benefit due to the increased surface area, pore volume and magnetic properties based on the Brunauer-Emmett-Teller (BET) and X-ray Powder Diffraction (XRD) analysis. The X-ray photoelectron spectroscopy (XPS) analysis also showed increased -CO3/O-C = O and potassium in the ACs as a result of potassium carbonate activation. The study proposes various applications that can support a circular economy, but future studies should investigate actual applications and potential health and environmental effects and evaluate the feasibility and environmental impact of production methods.

2.
Molecules ; 28(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903559

RESUMO

Py-GC/MS combines pyrolysis with analytical tools of gas chromatography (GC) and mass spectrometry (MS) and is a quick and highly effective method to analyse the volatiles generated from small amounts of feeds. The review focuses on using zeolites and other catalysts in the fast co-pyrolysis of various feedstocks, including biomass wastes (plants and animals) and municipal waste materials, to improve the yield of specific volatile products. The utilisation of zeolite catalysts, including HZSM-5 and nMFI, results in a synergistic reduction of oxygen and an increase in the hydrocarbon content of pyrolysis products. The literature works also indicate HZSM-5 produced the most bio-oil and had the least coke deposition among the zeolites tested. Other catalysts, such as metals and metal oxides, and feedstocks that act as catalysts (self-catalysis), such as red mud and oil shale, are also discussed in the review. Combining catalysts, such as metal oxides and HZSM-5, further improves the yields of aromatics during co-pyrolysis. The review highlights the need for further research on the kinetics of the processes, optimisation of feed-to-catalyst ratios, and stability of catalysts and products.

3.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771176

RESUMO

Global waste production is significantly rising with the increase in population. Efforts are being made to utilize waste in meaningful ways and increase its economic value. This research makes one such effort by utilizing gas-to-liquid (GTL)-derived biosolids, a significant waste produced from the wastewater treatment process. To understand the surface properties, the biosolid waste (BS) that is activated directly using potassium carbonate, labelled as KBS, has been characterized using scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), and Brunauer-Emmett-Teller (BET). The characterization shows that the surface area of BS increased from 0.010 to 156 m2/g upon activation. The EDS and XPS results show an increase in the metal content after activation (especially iron); additionally, XRD revealed the presence of magnetite and potassium iron oxide upon activation. Furthermore, the magnetic field was recorded to be 0.1 mT using a tesla meter. The magnetic properties present in the activated carbon show potential for pollutant removal. Adsorption studies of methylene blue using KBS show a maximum adsorption capacity of 59.27 mg/g; the adsorption process is rapid and reaches equilibrium after 9 h. Modelling using seven different isotherm and kinetic models reveals the best fit for the Langmuir-Freundlich and Diffusion-chemisorptionmodels, respectively. Additional thermodynamic calculations conclude the adsorption system to be exothermic, spontaneous, and favoring physisorption.

4.
Environ Res ; 225: 115534, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841521

RESUMO

Ongoing global population boom has led to the rise in waste and related research on increasing its economic value. In such an attempt, this study aims to activate gas-to-liquids (GTL) derived biosolids (BS) and cardboard (CB) and mixed samples (50:50) using potassium carbonate to produce three activated carbons (ACs): KBS, KCB and KM respectively. The characterization of the samples revealed surface areas of 156, 515, and 527 m2/g for KBS, KCB, and KM, respectively based on Brunauer-Emmett-Teller (BET) analysis, with increased porosity and metal content after activation evident from the Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) results, as well as the presence of magnetite in the KBS and KM samples apparent from the X-ray powder diffraction (XRD) results. Additionally, Fourier Transform Infrared Spectroscopy (FTIR) results indicate increased C-O-C stretches and O-H bonds after activation of the samples. The ACs were used for methylene blue (MB) removal process which is a rapid for all three samples, reaching equilibrium after 9 h, and optimal at neutral pH and maximum at the highest temperature, 40 °C. The MB adsorption capacity was highest for KM (191.07 mg/g), followed by the KCB and KBS samples. Isotherm modelling of the samples showed best fits for KBS, KCB and KM as Langmuir-Freundlich (LF), Langmuir and Toth models respectively. On the contrary, kinetic modelling using contact time study data for all samples exhibited best fits by the Diffusion-chemisorption (DC) model. Finally, the thermodynamic calculations of the mixed sample disclosed the adsorption process to be exothermic and spontaneous, with potential mechanisms being electrostatic attraction, ion exchange, π-π interactions, and hydrogen bonding. Multiple cycles of KM regeneration was also achieved with good adsorption capacities. Future work will explore other activation methods and examine the magnetic properties of KBS and KM for real water treatment.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Azul de Metileno/química , Biossólidos , Adsorção , Poluentes Químicos da Água/análise , Termodinâmica , Carvão Vegetal , Cinética , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Biomass Convers Biorefin ; : 1-30, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35855911

RESUMO

With ever-growing population comes an increase in waste and wastewater generated. There is ongoing research to not only reduce the waste but also to increase its value commercially. One method is pyrolysis, a process that converts wastes, at temperatures usually above 300 °C in a pyrolysis unit, to carbon-rich biochars among with other useful products. These chars are known to be beneficial as they can be used for water treatment applications; certain studies also reveal improvements in the biochar quality especially on the surface area and pore volume by imparting thermal and chemical activation methods, which eventually improves the uptake of pollutants during the removal of inorganic and organic contaminants in water. Research based on single waste valorisation into biochar applications for water treatment has been extended and applied to the pyrolysis of two or more feedstocks, termed co-pyrolysis, and its implementation for water treatment. The co-pyrolysis research mainly covers activation, applications, predictive calculations, and modelling studies, including isotherm, kinetic, and thermodynamic adsorption analyses. This paper focuses on the copyrolysis biochar production studies for activated adsorbents, adsorption mechanisms, pollutant removal capacities, regeneration, and real water treatment studies to understand the implementation of these co-pyrolyzed chars in water treatment applications. Finally, some prospects to identify the future progress and opportunities in this area of research are also described. This review provides a way to manage solid waste in a sustainable manner, while developing materials that can be utilized for water treatment, providing a double target approach to pollution management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...