Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37570069

RESUMO

Laser shock peening (LSP) is an innovative technique that is used to enhance the fatigue strength of structural materials via the generation of significant residual stress. The present work was undertaken to evaluate the degree of plastic strain introduced during LSP and thus improve the fundamental understanding of the LSP process. To this end, electron backscatter diffraction (EBSD) and nano-hardness measurements were performed to examine the microstructural response of laser-shock-peened Ti-6Al-4V alloy. Only minor changes in both the shape of α grains/particles and hardness were found. Accordingly, it was concluded that the laser-shock-peened material only experienced a small plastic strain. This surprising result was attributed to a relatively high rate of strain hardening of Ti-6Al-4V during LSP.

2.
Materials (Basel) ; 16(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37049192

RESUMO

The purpose of this work was the examination of microstructural evolution during the fabrication of an Al/Al2O3 composite by friction stir processing (FSP). In order to obtain new insight into this process, a longitudinal section of the produced composite was studied, and advanced characterization techniques (including electron backscatter diffraction and microhardness mapping) were applied. It was found that the reinforcing particles rapidly rearranged into the "onion-ring" structure, which was very stable against the subsequent dispersion. Specifically, the remnants of the comparatively coarse-scale particle agglomerations have survived even after 12 FSP passes. Therefore, it was concluded that three or four FSP passes, which are often applied in practice, are not sufficient to provide a homogeneous dispersion of the reinforcing particles. It was also revealed that the gradual distribution of the nanoscale Al2O3 particles throughout the aluminum matrix promoted a subtle reduction in both the portion of high-angle boundaries and the average grain size. These observations were attributed to the particle pinning of grain-boundary migration and dislocation slip.

3.
Materials (Basel) ; 15(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36556581

RESUMO

In this study, the friction-stir welding (FSW) technique was successfully applied for joining of AA2519 to AA5181 alloy. Microstructure and mechanical properties of dissimilar FSW joints were investigated by optical microscopy, microhardness, and tensile testing. The deformation behaviour of the welded joints was elucidated via the digital image correlation technique. After welding, the ultimate tensile strength of joints was ~300 MPa and ductility was ~16%. The microhardness values observed at the stir zone were higher than those in the base material AA5182. The produced welds demonstrate nearly 100% (based on AA5182) joint efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...