Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 660792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34045975

RESUMO

Neonatal pain such as that experienced by infants in the neonatal intensive care unit is known to produce later-life dysfunction including heightened pain sensitivity and anxiety, although the mechanisms remain unclear. Both chronic pain and stress in adult organisms are known to influence the corticotropin-releasing factor (CRF) system in the Central Nucleus of the Amygdala, making this system a likely candidate for changes following neonatal trauma. To examine this, neonatal rats were subjected to daily pain, non-painful handling or left undisturbed for the first week of life. Beginning on postnatal day, 24 male and female rats were subjected to a 4-day fear conditioning and sensory testing protocol. Some subjects received intra-amygdalar administration of either Vehicle, the CRF receptor 1 (CRF1) receptor antagonist Antalarmin, or the CRF receptor 2 (CRF2) receptor antagonist Astressin 2B prior to fear conditioning and somatosensory testing, while others had tissue collected following fear conditioning and CRF expression in the CeA and BLA was assessed using fluorescent in situ hybridization. CRF1 antagonism attenuated fear-induced hypersensitivity in neonatal pain and handled rats, while CRF2 antagonism produced a general antinociception. In addition, neonatal pain and handling produced a lateralized sex-dependent decrease in CRF expression, with males showing a diminished number of CRF-expressing cells in the right CeA and females showing a similar reduction in the number of CRF-expressing cells in the left BLA compared to undisturbed controls. These data show that the amygdalar CRF system is a likely target for alleviating dysfunction produced by early life trauma and that this system continues to play a major role in the lasting effects of such trauma into the juvenile stage of development.

2.
eNeuro ; 6(6)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31601633

RESUMO

Premature infants in the neonatal intensive care unit (NICU) may be subjected to numerous painful procedures without analgesics. One necessary, though acutely painful, procedure is the use of heel lances to monitor blood composition. The current study examined the acute effects of neonatal pain on maternal behavior as well as amygdalar and hypothalamic activation, and the long-term effects of neonatal pain on later-life anxiety-like behavior, using a rodent model. Neonatal manipulations consisted of either painful needle pricks or non-painful tactile stimulation in subjects' left plantar paw surface which occurred four times daily during the first week of life [postnatal day (PND)1-PND7]. Additionally, maternal behaviors in manipulated litters were compared against undisturbed litters via scoring of videotaped interactions to examine the long-term effects of pain on dam-pup interactions. Select subjects underwent neonatal brain collection (PND6) and fluorescent in situ hybridization (FISH) for corticotropin-releasing hormone (CRH) and the immediate early gene c-fos. Other subjects were raised to juvenile age (PND24 and PND25) and underwent innate anxiety testing utilizing an elevated plus maze (EPM) protocol. FISH indicated that neonatal pain influenced amygdalar CRH and c-fos expression, predominately in males. No significant increase in c-fos or CRH expression was observed in the hypothalamus. Additionally, neonatal pain altered anxiety behaviors independent of sex, with neonatal pain subjects showing the highest frequency of exploratory behavior. Neonatal manipulations did not alter maternal behaviors. Overall, neonatal pain drives CRH expression and produces behavioral changes in anxiety that persist until the juvenile stage.


Assuntos
Dor Aguda/metabolismo , Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Animais , Animais Recém-Nascidos , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Feminino , Masculino , Comportamento Materno , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...