Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 261: 116498, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38878697

RESUMO

The World Anti-Doping Agency (WADA) has prohibited the use of clenbuterol (CLN) because it induces anabolic muscle growth while potentially causing adverse effects such as palpitations, anxiety, and muscle tremors. Thus, it is vital to assess meat quality because, athletes might have positive test for CLN even after consuming very low quantity of CLN contaminated meat. Numerous materials applied for CLN monitoring faced potential challenges like sluggish ion transport, non-uniform ion/molecule movement, and inadequate electrode surface binding. To overcome these shortcomings, herein we engineered bimetallic zeolitic imidazole framework (BM-ZIF) derived N-doped porous carbon embedded Co nanoparticles (CN-CoNPs), dispersed on conductive cellulose acetate-polyaniline (CP) electrospun nanofibers for sensitive electrochemical monitoring of CLN. Interestingly, the smartly designed CN-CoNPs wrapped CP (CN-CoNPs-CP) electrospun nanofibers offers rapid diffusion of CLN molecules to the sensing interface through amine and imine groups of CP, thus minimizing the inhomogeneous ion transportation and inadequate electrode surface binding. Additionally, to synchronize experiments, machine learning (ML) algorithms were applied to optimize, predict, and validate voltametric current responses. The ML-trained sensor demonstrated high selectivity, even amidst interfering substances, with notable sensitivity (4.7527 µA/µM/cm2), a broad linear range (0.002-8 µM), and a low limit of detection (1.14 nM). Furthermore, the electrode exhibited robust stability, retaining 98.07% of its initial current over a 12-h period. This ML-powered sensing approach was successfully employed to evaluate meat quality in terms of CLN level. To the best of our knowledge, this is the first study of using ML powered system for electrochemical sensing of CLN.


Assuntos
Técnicas Biossensoriais , Celulose , Clembuterol , Cobalto , Aprendizado de Máquina , Nanofibras , Clembuterol/análise , Nanofibras/química , Técnicas Biossensoriais/métodos , Celulose/química , Celulose/análogos & derivados , Cobalto/química , Animais , Carne/análise , Nanopartículas Metálicas/química , Compostos de Anilina/química , Técnicas Eletroquímicas/métodos , Contaminação de Alimentos/análise , Análise de Alimentos/métodos , Análise de Alimentos/instrumentação , Limite de Detecção , Carbono/química
2.
Mikrochim Acta ; 190(9): 355, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594627

RESUMO

The fabrication of a heteroatom-doped nanocomposite based on cobalt oxide modified sulfur, phosphorus co-doped carbon nitride (Co3O4/SP-CN) with increased active sites is reported. The synthesized nanocomposite offers surprisingly high electrocatalytic oxidation efficacy toward human albumin (HA) despite its agglomeration. This improved efficacy of Co3O4/SP-CN nanocomposite could be attributed to its increased adsorption sites and surface defects, fast charge transportation capability, and conductivity. Additionally, morphological and compositional analysis of the fabricated Co3O4/SP-CN material has been performed  through scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photon spectroscopy (XPS), and Raman spectroscopy. The fabricated electrode shows remarkable amperometric response against the HA with a limit of detection of 8.39 nM and linear range of 20-4000 nM at applied potential of 0.25 V versus Ag/AgCl in 0.1 M PBS (pH 8.2). The designed Co3O4/SP-CN electrode has been successfully applied to monitor HA in  urine samples of diabetic patient with recovery percentage from 94.1 and 92.1% and with relative standard deviation (RSD) values of 5.8 and 7.8%. According to the best of our knowledge, this is the first report to use a Co3O4/SP-CN-based graphitic pencil (GP) electrode for monitoring of HA for early diagnosis of diabetic nephropathy.


Assuntos
Óxidos , Albumina Sérica Humana , Enxofre , Humanos , Fósforo , Albumina Sérica Humana/urina
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122457, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764165

RESUMO

Blood serum contains essential biochemical information which are used for early disease diagnosis. Blood serum consisted of higher molecular weight fractions (HMWF) and lower molecular weight fractions (LMWF). The disease biomarkers are lower molecular weight fraction proteins, and their contribution to disease diagnosis is suppressed due to higher molecular weight fraction proteins. To diagnose diabetes in early stages are difficult because of the presence of huge amount of these HMWF. In the current study, surface-enhanced Raman spectroscopy (SERS) are employed to diagnose diabetes after centrifugation of serum samples using Amicon ultra filter devices of 50 kDa which produced two fractions of whole blood serum of filtrate, low molecular weight fraction, and residue, high molecular weight fraction. Furthermore SERS is employed to study the LMW fractions of healthy and diseased samples. Some prominent SERS bands are observed at 725 cm-1, 842 cm-1, 1025 cm-1, 959 cm-1, and 1447 cm-1 due to small molecular weight proteins, and these biomarkers helped to diagnose the disease early stage. Moreover, chemometric techniques such as principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) are employed to check the potential of surface-enhanced Raman spectroscopy for the differentiation and classifications of the blood serum samples. SERS can be employed for the early diagnosis and screening of biochemical changes during type II diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Soro , Humanos , Análise Espectral Raman/métodos , Análise Discriminante , Biomarcadores , Análise de Componente Principal
4.
Photodiagnosis Photodyn Ther ; 41: 103262, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36587860

RESUMO

BACKGROUND: Surface Enhanced Raman Spectroscopy (SERS) is a very promising and fast technique for studying drugs and for detecting chemical nature of a molecule and DNA interaction. In the current study, SERS is employed to check the interaction of different concentrations of n-propyl imidazole derivative ligand with salmon sperm DNA using silver nanoparticles as SERS substrates. OBJECTIVES: Multivariate data analysis technique like principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) are employed for the detailed analysis of the SERS spectral features associated with the mode of action of the imidazole derivative ligand with DNA. METHODOLOGY: Silver nanoparticles were used as a SERS substrate in DNA-drug interaction. Five different concentrations of ligands were interacted with DNA and mix with Ag-NPs as substrate. The SERS spectra of were acquired for all seven samples and processed using MATLAB. Additionally, PCA and PLS-DA were used to assessed the ability SERS to differentiate interaction of DNA-drug. RESULTS: Differentiating SERS features having changes in their peak position and intensities are observed including 629, 655, 791, 807, 859, 1337, 1377 and 1456 cm-1. These SERS features reveal that binding of ligand with DNA is electrostatic in nature, and have specificity to major groove where it forms GC-CG interstrand cross-linking with the DNA double helix. CONCLUSIONS: SERS give significant information regarding to Drug-DNA interaction mechanism, SERS spectra inferred the mode of action of anticancer compound that are imidazole in nature.


Assuntos
Nanopartículas Metálicas , Fotoquimioterapia , Animais , Masculino , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Prata/química , Salmão , Ligantes , Sêmen , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Imidazóis
5.
RSC Adv ; 12(40): 26390-26399, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36275100

RESUMO

Several neurological disorders, including Parkinson's disease, schizophrenia, human immunodeficiency virus infection, and restless leg syndrome, majorly result from disruption in the dopamine (DA) level. Thus, useful information about the treatment and prevention of various genetic majorly mental health problems can be obtained through precise and real-time monitoring of DA. Herein, we report the fabrication of novel N-rich carbon-coated Au nanoparticles (NC@Au-NPs) by deriving from melamine-crosslinked citrate-stabilized Au NPs. NC@Au-NPs offer fast electro-oxidation efficacy towards DA, because of strong electrostatic attraction between negatively charged NC@Au-NPs and positively charged DA. The catalytic efficacy and shelf life of the designed system were further boosted by applying a mixture of polydopamine (PDA) and benzimidazolium-1-acetate ionic liquid (IL) as a sandwich between the working electrode surface (graphitic pencil electrode: GPE) and the designed nanohybrid NC@Au-NPs as a redox mediator. The results indicate that the designed novel NC@Au/PDA-IL/GPE exhibits excellent sensitivity, selectivity, and reproducibility over a wide linear range (50-1000 nm) and a low detection limit of 0.002 µM ± 0.001 as well. The developed sensor was successfully applied to monitor DA in the blood of COVID-19 quarantined patients and pharmaceutical samples with high accuracy, thus suggesting a powerful tool for the diagnosis of mental problems.

6.
ACS Appl Mater Interfaces ; 12(42): 47320-47329, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33023289

RESUMO

Herein, we synthesized hollow cubic caves of CuO (HC) and wrapped it with N-rich graphitic C (NC), derived from a novel biogenic mixture composed of dopamine (DA) and purine. The synthesized NC wrapped HC (NC@HC) sensor shows enhanced electrocatalytic efficacy compared to unwrapped CuO with shapes including HC, sponge (SP), cabbage (CB), and solid icy cubes (SC). The shape and composition of synthesized materials were confirmed through field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), whereas interfacial surface energy was calculated through contact angle measurement. The designed NC@HC sensor shows a remarkable response toward the simultaneous detection of uric acid (UA) and xanthine (Xn) with detection limits of 0.017 ± 0.001 (S/N of 3) and 0.004 ± 0.001 µM (S/N of 3), respectively. In addition, this platform was successfully applied to monitor UA from the gout patient serum. To the best of our knowledge, this is the first report on using such novel NC@HC materials for the simultaneous monitoring of UA and Xn.


Assuntos
Cobre/química , Grafite/química , Ácido Úrico/análise , Xantina/análise , Eletrodos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...