Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(26): 11147-11164, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38895825

RESUMO

Designing innovative microstructures and implementing efficient multicomponent strategies are still challenging to achieve high-performance and chemo-mechanically stable electrode materials. Herein, a hierarchical three-dimensional (3D) graphene oxide (GO) assisted Ti3C2Tx MXene aerogel foam (MXene-GAF) impregnated with battery-type bimetallic nickel vanadium selenide (NiVSe) has been prepared through a hydrothermal method followed by freeze-drying (denoted as NiVSe-MXene-GAF). 3D-oriented cellular pore networks benefit the energy storage process through the effective lodging of NiVSe particles, improving the access of the electrolyte to the active sites, and alleviating volume changes during redox reactions. The 3D MXene-GAF conductive matrix and heterostructured interface of MXene-rGO and NiVSe facilitated the rapid transport of electrical charges and ions during the charge-discharge process. As a result of the synergism of these effects, NiVSe-MXene-GAF exhibited remarkable electrochemical performance with a specific capacity of 305.8 mA h g-1 at 1 A g-1 and 99.2% initial coulombic efficiency. The NiVSe-MXene-GAF electrode delivered a specific capacity of 235.1 mA h g-1 even at a high current density of 12 A g-1 with a 76.8% rate performance. The impedance measurements indicated a low bulk solution resistance (Rs = 0.71 Ω) for NiVSe-MXene-GAF. Furthermore, the structural robustness of NiVSe-MXene-GAF guaranteed long-term stability with a 91.7% capacity retention for successive 7000 cycles. Thus, developing NiVSe-MXene-GAF provides a progressive strategy for fabricating high-performance 3D heterostructured electrode materials for energy storage applications.

2.
RSC Adv ; 14(24): 16661-16677, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784421

RESUMO

This study explores the iodine and nickel-doped cobalt hydroxide (I & Ni-co-doped-Co(OH)2) as a potential material for energy storage and conversion applications owing to its excellent electrochemical characteristics. According to our analysis, it was revealed that this material exhibits pseudocapacitive-like behavior, as evident from distinct redox peaks observed in cyclic voltammetry, which confirms its ability to store charges. The diffusion coefficient analysis reveals that this material possesses conductivity and rapid diffusion kinetics, making it particularly advantageous compared to materials synthesized in previous studies. Charge-discharge measurements were performed to analyze the charge storage capacity and stability of this material after 3000 consecutive cycles, showing its excellent stability with minimum loss of capacitance. Furthermore, its anodic and cathodic linear sweep voltammetry curves were measured to evaluate its oxygen evolution and hydrogen evolution reaction performance. The results showed that the material exhibited an excellent water splitting performance, which suggests its potential practical application for hydrogen production. This increased activity was attributed to the doping of α-Co(OH)2, which improved its structural stability, electrical conductivity, and charge transfer efficiency. Thus, I & Ni-co-doped-Co(OH)2 possesses enhanced properties that make it an excellent material for both energy storage and hydrogen generation applications.

3.
Dalton Trans ; 53(19): 8177-8190, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38683625

RESUMO

Exploring new strategies to design non-precious and efficient electrocatalysts can provide a solution for sluggish electrocatalytic kinetics and sustainable hydrogen energy. Transition metal selenides are potential contenders for bifunctional electrocatalysis owing to their unique layered structure, low band gap, and high intrinsic activities. However, insufficient access to active sites, lethargic water dissociation, and structural degradation of active materials during electrochemical reactions limit their activities, especially in alkaline media. In this article, we report a useful strategy to assemble vanadium diselenide (VSe2) into a 3D MXene/rGO-based sponge-like architecture (VSe2@G/MXe) using hydrothermal and freeze-drying approaches. The 3D hierarchical meso/macro-pore rich sponge-like morphology not only prevents aggregation of VSe2 nanosheets but also offers a kinetics-favorable framework and high robustness to the electrocatalyst. Synergistic coupling of VSe2 and a MXene/rGO matrix yields a heterostructure with a large specific surface area, high conductivity, and multi-dimensional anisotropic pore channels for uninterrupted mass transport and gas diffusion. Consequently, VSe2@G/MXe presented superior electrochemical activity for both the HER and OER compared to its counterparts (VSe2 and VSe2@G), in alkaline media. The overpotentials required to reach a cathodic and anodic current density of 10 mA cm-2 were 153 mV (Tafel slope = 84 mV dec-1) and 241 mV (Tafel slope = 87 mV dec-1), respectively. The Rct values at the open circuit voltage were as low as 9.1 Ω and 1.41 Ω for the HER and OER activity, respectively. Importantly, VSe2@G/MXe withstands a steady current output for a long 24 h operating time. Hence, this work presents a rational design for 3D microstructures with optimum characteristics for efficient bifunctional alkaline water-splitting.

4.
RSC Adv ; 14(5): 2947-2960, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239454

RESUMO

Halloysite nanotubes (HNTs) were surface functionalized using four distinct chemical moieties (amidoxime, hydrazone, ethylenediamine (EDA), and diethylenetriamine (DETA)), producing modified HNTs (H1-H4) capable of binding with Cr(vi) ions. Advanced techniques like FTIR, XRD, SEM, and EDX provided evidence of the successful functionalization of these HNTs. Notably, the functionalization occurred on the surface of HNTs, rather than within the interlayer or lumen. These decorated HNTs were effective in capturing Cr(vi) ions at optimized sorption parameters, with adsorption rates ranging between 58-94%, as confirmed by atomic absorption spectroscopy (AAS). The mechanism of adsorption was further scrutinized through the Freundlich and Langmuir isotherms. Langmuir isotherms revealed the nearest fit to the data suggesting the monolayer adsorption of Cr(vi) ions onto the nanotubes, indicating a favorable adsorption process. It was hypothesized that Cr(vi) ions are primarily attracted to the amine groups on the modified nanotubes. Quantum chemical calculations further revealed that HNTs functionalized with hydrazone structures (H2) demonstrated a higher affinity (interaction energy -26.33 kcal mol-1) for the Cr(vi) ions. This can be explained by the formation of stronger hydrogen bonds with the NH moieties of the hydrazone moiety, than those established by the OH of oxime (H1) and longer amine chains (H3 and H4), respectively. Overall, the findings suggest that these decorated HNTs could serve as an effective and cost-efficient solution for treating water pollution.

5.
RSC Adv ; 13(38): 26822-26838, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37681040

RESUMO

In this work, we studied the effect of iron (Fe) and vanadium (V) co-doping (Fe/V), and graphitic carbon nitride (g-C3N4) on the performance of tungsten oxide (WO3) based electrodes for supercapacitor applications. The lone pair of electrons on nitrogen can improve the surface polarity of the g-C3N4 electrode material, which may results in multiple binding sites on the surface of electrode for interaction with electrolyte ions. As electrolyte ions interact with g-C3N4, they quickly become entangled with FeV-WO3 nanostructures, and the contact between the electrolyte and the working electrode is strengthened. Herein, FeV-WO3@g-C3N4 is fabricated by a wet chemical approach along with pure WO3 and FeV-WO3. All of the prepared samples i.e., WO3, FeV-WO3, and FeV-WO3@g-C3N4 were characterized by XRD, FTIR, EDS, FESEM, XPS, Raman, and BET techniques. Electrochemical performance is evaluated by cyclic voltammetry (CV), galvanic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS). It is concluded from electrochemical studies that FeV-WO3@g-C3N4 exhibits the highest electrochemical performance with specific capacitance of 1033.68 F g-1 at scan rate 5 mV s-1 in the potential window range from -0.8 to 0.25 V, that is greater than that for WO3 (422.76 F g-1) and FeV-WO3 (669.76 F g-1). FeV-WO3@g-C3N4 has the highest discharge time (867 s) that shows it has greater storage capacity, and its coulombic efficiency is 96.7%, which is greater than that for WO3 (80.1%) and FeV-WO3 (92.1%), respectively. Furthermore, excellent stability up to 2000 cycles is observed in FeV-WO3@g-C3N4. It is revealed from EIS measurements that equivalent series resistance and charge transfer values calculated for FeV-WO3@g-C3N4 are 1.82 Ω and 0.65 Ω, respectively.

6.
RSC Adv ; 13(40): 28063-28075, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37746331

RESUMO

Herein, nanostructured Gd-doped ZnFe2O4 (GZFO) has been synthesized via the sol-gel route and its CNT-reinforced nanohybrid was formed via an advanced ultrasonication method. The as-synthesized, hybrid electroactive materials have been supported on aluminum foil (AF) to design a flexible electrode for hybrid capacitor (HC) applications. Nanostructured material synthesis, Gd-doping, and CNT reinforcement approaches have been adopted to develop a rationally designed electrode with a high surface area, boosted electrical conductivity, and enhanced specific capacitance. Electrochemical impedance spectroscopy, galvanostatic charge/discharge, and cyclic voltammetry processes have been used to measure the electrochemical performance of the prepared ferrite material-based working electrodes in a 3M KOH solution. A nanohybrid-based working electrode (GZFO/C@AF) shows superior rate capacitive and electrochemical aptitude (specific capacitance, rate performance, and cyclic activity) than its counterpart working electrodes (ZFO@AF and GZFO@AF). The hybrid working electrode (GZFO/C@AF electrode) shows a high specific capacitance of 887 F g-1 and good retention of 94.5% for 7000 cycles (at 15 Ag-1). The maximum energy density and power density values for the GZFO/C@AF electrode are 40.025 Wh Kg-1 and 279.78 W Kg-1, respectively. Based on the findings of the electrochemical experiments, GZFO/C@AF shows promise as an electrode material for hybrid capacitors that provide energy to wearable electronic devices.

7.
RSC Adv ; 12(36): 23454-23465, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36090404

RESUMO

The design of oxygen evolution reaction (OER) catalysts with higher stability and activity by economical and convenient methods is considered particularly important for the energy conversion technology. Herein, a simple hydrothermal method was adopted for the synthesis of iodine-doped nickel hydroxide nanoparticles and their OER performance was explored. The electrocatalysts were structurally characterized by powder X-ray diffraction analysis (P-XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and BET analysis. The electrochemical performance of the electrocatalysts was assessed by cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. The abundant catalytic active sites, oxygen vacancies, low charge-transfer resistance, and a high pore diameter to pore size ratio of iodine-doped Ni(OH)2 were responsible for its excellent catalytic activity, whereby OER was initiated even at 1.52 V (vs. RHE) and a 330 mV overpotential was needed to reach a 40 mV cm-2 current density in 1 M KOH solution. The material also exhibited a low Tafel slope (46 mV dec-1), which suggests faster charge-transfer kinetics as compared to its counterparts tested under the same electrochemical environment. It is worth noting that this facile and effective approach suggests a new way for the fabrication of metal hydroxides rich in oxygen vacancies, thus with the potential to boost the electrochemical performance of energy-related systems.

8.
Bioengineering (Basel) ; 9(9)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36134984

RESUMO

Using biomolecule-rich plant extracts, the conversion of metal ions to metal oxide nanoparticles via abiogenic approach is highly intriguing, environmentally friendly, and quick. The inherent inclination of plant extracts function as capping agents in the insitu synthesis. In this study, biogenic zinc oxide nanoparticles (ZnO-NPs) were synthesized using an aqueous leaf extract from Moringaoleifera. The ZnO-NPs were then mixed with carboxylated carbon nanotubes (CNTs) to create a carboxylated CNTs/biogenic ZnO composite using asol-gel method. The CNTs/ZnO composite displayed 18 mm, 16 mm, and 17 mm zones of inhibition (ZOI) against Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli, respectively. In contrast with ZnO-NPs, the produced carboxylated CNTs/ZnO composite demonstrated a 13 percent elevation in ZOI as antibacterial activity against Bacillus cereus ATCC 19659, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853. The characterization of ZnO-NPs and the carboxylated CNTs/ZnO composite were performed via FTIR, UV/Vis spectroscopy, SEM, and XRD. The XRD pattern depicted a nano-sized crystalline structure (Wurtzite) of ZnO-NPs and a carboxylated CNTs/ZnO composite. The current work comprehends a valuable green technique for killing pathogenic bacteria, and gives fresh insights into the manufacture of metal oxide composites for future research.

9.
Nanomaterials (Basel) ; 12(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215041

RESUMO

Tungsten oxide (WO3), MXene, and an WO3/MXene nanocomposite were synthesized to study their photocatalytic and biological applications. Tungsten oxide was synthesized by an easy and cost-effective hydrothermal method, and its composite with MXene was prepared through the sonication method. The synthesized tungsten oxide, MXene, and its composite were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR), energy-dispersive X-ray analysis (EDX), and Brunauer-Emmett-Teller (BET) for their structural, morphological, spectral, elemental and surface area analysis, respectively. The crystallite size of WO3 calculated from XRD was ~10 nm, the particle size of WO3 was 130 nm, and the average thickness of MXene layers was 175 nm, which was calculated from FESEM. The photocatalytic activity of as-synthesized samples was carried out for the degradation of methylene blue under solar radiation, MXene, the WO3/MXene composite, and WO3 exhibited 54%, 89%, and 99% photocatalytic degradation, respectively. WO3 showed maximal degradation ability; by adding WO3 to MXene, the degradation ability of MXene was enhanced. Studies on antibacterial activity demonstrated that these samples are good antibacterial agents against positive strains, and their antibacterial activity against negative strains depends upon their concentration. Against positive strains, the WO3/MXene composite's inhibition zone was at 7 mm, while it became 9 mm upon increasing the concentration. This study proves that WO3, MXene, and the WO3/MXene nanocomposite could be used in biological and environmental applications.

10.
J Hazard Mater ; 402: 123526, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758998

RESUMO

An efficient, environment-friendly and economical catalyst to control contaminants of environment is an enduring interest in recent years. In this study, a new composite, DyxMnFe2-xO4nanoparticles decorated over mesoporous silica was synthesized and utilized for removal of organic pollutant. Highly crystalline nature of DyxMnFe2-xO4 nanoparticles and amorphous nature of material was confirmed by XRD (X-ray diffraction) technique. Infrared spectra of fabricated material before and after adsorption of dye molecules evidenced the successful adsorption of dye molecules by fabricated adsorbent. From field emission scanning electron microscopic (FESEM) images of Dy3+ substituted MnFe2O4 composite with mesoporous silica, it was clearly observed that ferrite particles of size 20-30 nm were decorated on the surface of mesoporous silica particles and distributed well over spherical silica balls homogeneously. Its magnificent mesoporous nature was revealed from BET (nitrogen adsorption-desorption measurements) analysis. Surface area, pore volume and average pore size was found 387.95 m2/g, 0.390 cm3/g and 4.02 nm respectively. Tri-modal pore size distribution showed its effective utilization in adsorption. The abundant (SiOH) hydroxyl groups of mesoporous silica, the broad diffraction hump of silica depicted its superior loading capacity of target molecular specie inside its porous network. From band gap analysis, a red shift of 2.43 eV exhibited semiconductor photocatalysis of DyxMnFe2-xO4 nanoparticles. Degradation efficiency of bare MnFe2O4, DyxMnFe2-xO4 and mesoporous silica-based composite was tested using crystal violet dye. Its explored adsorption-photocatalysis synergy, degradation mechanism, kinetic investigation, easily recovery and remarkable recycling ability suggested that the new fabricated composite is best for environmental remediation.

11.
J Pak Med Assoc ; 70(10): 1822-1825, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33159760

RESUMO

A case-control study was conducted to determine the quality of life, frequency of anxiety symptoms, depression and stress among pregnant women with previous adverse antenatal record. Forty-five patients who presented at the Sheikh Zayed Medical College/Hospital Rahim Yar Khan with adverse pregnancy outcome in the previous pregnancy and 45 patients who had normal live birth in the last pregnancy were evaluated to assess the impact of previous experience with anxiety, depression, stress and quality of life (QOL) during the subsequent pregnancy. The study was conducted between October 2018 and April 2019. Depression, anxiety and stress scale (DASS) 21 was used to determine the anxiety, depression and stress. To determine the quality of life, Quality of life scale (QOL) consisting of 16 questions was used. It was revealed that the study group patients had higher illiteracy rate 6 (13.3%) as compared to the control group 0 (0.00%). Rate of previous planned pregnancy was lower in the study group 6 (13.3%) as against 15 (33.3%) among controls. Anxiety, depression and stress score was also significantly higher among the study group as compared to the control group. The study showed that women who had previous adverse antenatal record have poor quality of life, and higher degree of anxiety, depression and stress in subsequent pregnancy as compared to those who had normal live birth in the previous pregnancy. Previous pregnancy outcome should be considered along with other psychological variables to develop the conceptual model of anxiety and depression during pregnancy.


Assuntos
Complicações na Gravidez , Qualidade de Vida , Ansiedade/epidemiologia , Estudos de Casos e Controles , Depressão/epidemiologia , Feminino , Hospitais , Humanos , Gravidez , Complicações na Gravidez/epidemiologia , Gestantes , Estresse Psicológico/epidemiologia
12.
Sci Rep ; 10(1): 10076, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572117

RESUMO

Amine-terminated core-shell silica coated magnetite nanoparticles were functionalized with diglycolic acid for the first time to create acid moiety on the surface of the nanoparticles. The formation of magnetite nanoparticles was scrutinised through XRD, SEM, EDS, TEM, VSM and FTIR spectroscopy. The BET surface area of nano-sorbent was found to be 4.04 m2/g with pore size 23.68 nm. These nanomaterials were then utilized to remove the Pb(II) and Cr(VI) ions from their aqueous media and uptake of metal ions was determined by atomic absorption spectroscopy (AAS). A batch adsorption technique was applied to remove both ions at optimised pH and contact time with maximum adsorption efficiency for Pb(II) ions at pH 7 while for Cr(VI) ions at pH 3. Adsorption mechanism was studied using Langmuir and Freundlich isotherms and equilibrium data fitted well for both the isotherms, showing complex nature of adsorption comprising both chemisorption as well as physio-sorption phenomena. The nanosorbents exhibited facile separation by applying external magnetic field due to the ferrimagnetic behaviour with 31.65 emu/g saturation magnetization. These nanosorbents were also found to be used multiple times after regeneration.

13.
J Chem Inf Model ; 60(7): 3423-3430, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32584030

RESUMO

Advances in computer-aided translation technology have made tremendous progress in accuracy in the past few years. Chemical Abstracts Service of the American Chemical Society summarizes scientific works from more than 50 languages and allows the users to search papers in nine selected languages. Currently, only the abstracts are rendered into English by human experts or by machine translation because full text translation of millions of articles is beyond the human capacity today. An English translation of a research paper, scientific book, or patent is often required for research, data mining, and for historical purposes from various foreign languages. Many fundamental papers in chemistry, quantum chemistry, physics, and mathematics contain a significant number of chemical or mathematical equations. One of the major known problems in machine translation of such symbolically dense texts is incorrect or meaningless output. This article describes how to optimize the existing machine translation tools to read foreign language papers embedded with chemical/mathematical equations. German and French languages have been selected for illustrative purposes for English translation. Direct upload of text with extensive symbolism is possible with certain services, but this also occasionally produces erroneous rendition into English. A facile solution to the associated problems with embedded equations and mathematical formulas is replacing the equations and notations with "dummy" variables. The placeholder or dummy symbols can be removed after translation, and the original equations are substituted again. This approach, which can be automated in future, relies on the idea that chemical formulas and mathematical notations are universal. Following the guidelines in the article, excellent translations can be produced from a text having interspersed equations and chemical symbols.


Assuntos
Idioma , Tradução , Humanos , Matemática , Processamento de Linguagem Natural , Simbolismo
14.
J Hazard Mater ; 394: 122593, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32251904

RESUMO

In the current investigation, graphene (rGO)-supported cerium substituted nickel ferrite (NiCeyFe2-yO4 y = 0.05) photocatalyst was prepared via two-step wet chemical approach. The resulting NiCeyFe2-yO4/rGO nanocomposite exhibited excellent photocatalytic performance and stability. Moreover, the photocatalytic activity of NiCeyFe2-yO4/rGO nanocomposite was also investigated comparatively with NiCeyFe2-yO4 nanoparticles. As compared to the NiCeyFe2-yO4 nanoparticles, NiCeyFe2-yO4/rGO nanocomposite showed superior photocatalytic efficiency and recycling stability for MB degradation, which is two times that of bare NiCeyFe2-yO4 nanoparticles. After visible light irradiation for 70 min, 94.67 % of MB dye was removed by NiCeyFe2-yO4/rGO nanocomposite whereas only 50 % of MB dye was removed by NiCeyFe2-yO4 nanoparticles. The increase in photocatalytic performance is mainly ascribed to formation of NiCeyFe2-yO4/rGO heterojunction which not only assist in separation of photo-induced charge carriers, but also sustain a strong redox ability. Moreover, the photo-corrosion of NiCe0.05Fe1.95O4 nanoparticles is inhibited through transfer of photo-induced electrons of NiCe0.05Fe1.95O4 nanoparticles to rGO. A possible photo-degradation mechanism based on reactive species trapping experiments has been proposed. The effect of various factors like pH, temperature and catalyst dosage has also been explored. Facile synthesis method, excellent photocatalytic performance for organic pollutants and superior reusability suggest that NiCeyFe2-yO4/rGO photocatalyst possesses high potential for large-scale pollutant treatment.

15.
J Chem Inf Model ; 58(11): 2214-2223, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30358403

RESUMO

A significant number of published databases and research papers exist in foreign languages and remain untranslated to date. Important sources of primary scientific information in German are Beilstein Handbuch der Organischen Chemie, Gmelin Handbuch der Anorganischen Chemie, Landolt-Börnstein Zahlenwerte und Funktionen, Houben-Weyl Methoden der Organischen Chemie, fundamental research papers, and patents. Although Reaxys has acquired Beilstein and Gmelin, many original references are still in German since 1770s, and the information presented in printed and online versions is often not duplicated. To read these resources, either costly professional translation services are needed or a reading knowledge of German has to be acquired. A convenient approach is to utilize machine translation for reading German texts; however, there is a question of translation reliability. In this work, several different platforms that employ neural network for machine translation (NMT) were tested for translation capability of scientific German. From a preliminary survey, Google Translate and DeepL were finalized for further studies (German to English). Excerpts from German documents spanning more than a century have been carefully chosen from standard works. DeepL Translator and Google Translate were found to be reliable for converting German scientific literature into English for a wide variety of technical passages. As a benchmark, human and machine translations are compared for complex sentences from old literature and a recent publication. Care and intuition should be used before relying on machine translation of methods and directions in general. Reagent addition (to or from) may be inverted in some synthetic procedures using machine translations.


Assuntos
Inteligência Artificial , Tradução , Química , Bases de Dados Factuais , Humanos , Idioma , Física , Editoração , Leitura , Pesquisa , Termodinâmica
16.
Macromol Rapid Commun ; 37(14): 1135-42, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26954303

RESUMO

The incorporation of ionic liquid (IL) chemistry into functional polymers has extended the properties and applications of polyelectrolytes. However, ILs are expensive due to the presence of fluorinated anions or complicated synthetic steps which limit their technological viability. Here, we show a new family of poly(ionic liquid)s (PILs) which are based in cheap and renewable chemicals and involves facile synthetic approaches. Thus, deep eutectic monomers (DEMs) are prepared for the first time by using quaternary ammonium compounds and various hydrogen bond donors such as citric acid, terephthalic acid or an amidoxime. The deep eutectic formation is made through a simple mixing of the ingredients. Differential scanning calorimetry, nuclear magnetic resonance (NMR) and computational studies reveal the formation of the DEMs due to the ionic interactions. The resulting DEMs are liquid which facilitates their polymerization using mild photopolymerization or polycondensation strategies. Spectroscopic characterizations reveal the successful formation of the polymers. By this way, a new family of PILs can be synthesized which can be used for different applications. As an example, the polymers show promising performance as solid CO2 sorbents. Altogether the deep eutectic monomer route can lead to non-toxic, cheap and easy-to-prepare alternatives to current PILs for different applications.


Assuntos
Líquidos Iônicos/síntese química , Polímeros/síntese química , Líquidos Iônicos/química , Estrutura Molecular , Polimerização , Polímeros/química , Compostos de Amônio Quaternário/química
17.
J Environ Sci (China) ; 26(7): 1423-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25079990

RESUMO

Global warming, the major environmental issue confronted by humanity today, is caused by rising level of green house gases. Carbon capture and storage technologies offer potential for tapering CO2 emission in the atmosphere. Adsorption is believed to be a promising technology for CO2 capture. For this purpose, a polyester was synthesized by polycondensation of 1,3,5-benzenetricarbonyl trichloride and cyanuric acid in pyridine and dichloromethane mixture. The polymer was then characterized using FT-IR, TGA, BET surface area and pore size analysis, FESEM and CO2 adsorption measurements. The CO2 adsorption capacities of the polyester were evaluated at a pressure of 1bar and two different temperatures (273 and 298K). The performance of these materials to adsorb CO2 at atmospheric pressure was measured by optimum CO2 uptake of 0.244 mmol/g at 273K. The synthesized polyester, therefore, has the potential to be exploited as CO2 adsorbent in pre-combustion capture process.


Assuntos
Dióxido de Carbono/química , Poliésteres/química , Adsorção , Microscopia Eletrônica de Varredura , Sondas Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
18.
Phys Chem Chem Phys ; 15(34): 14319-27, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23877231

RESUMO

Porous network structures (e.g. metal-organic frameworks, MOFs) show considerable potential in dethroning monoethanol amine (MEA) from being the dominant scrubber for CO2 at the fossil-fuel-burning power generators. In contrast to their promise, structural stability and high-pressure behavior of MOFs are not well documented. We herein report moisture stability, mechanical properties and high-pressure compression on a model MOF structure, MOF-5. Our results show that MOF-5 can endure all tested pressures (0-225 bar) without losing its structural integrity, however, its moist air stability points at a 3.5 hour safety window (at 21.6 °C and 49% humidity) for an efficient CO2 capture. Isosteric heats of CO2 adsorption at high pressures show moderate interaction energy between CO2 molecules and the MOF-5 sorbent, which combined with the large sorption ability of MOF-5 in the studied pressure-temperature ranges show the viability of this sorbent for CO2 capturing purposes. The combination of the physicochemical methods we used suggests a generalized analytical standard for measuring viability in CO2 capture operations.

19.
Langmuir ; 27(17): 10642-7, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21805978

RESUMO

Carbon dioxide (CO(2)) adsorption capacities of several hydroxy metal carbonates have been studied using the state-of-the-art Rubotherm sorption apparatus to obtain adsorption and desorption isotherms of these compounds up to 175 bar. The carbonate compounds were prepared by simply reacting a carbonate (CO(3)(2-)) solution with solutions of Zn(2+), Zn(2+)/Mg(2+), Mg(2+), Cu(2+)/Mg(2+), Cu(2+), Pb(2+), and Ni(2+) metal ions, resulting in hydroxyzincite, hydromagnesite, mcguinnessite, malachite, nullaginite, and hydrocerussite, respectively. Mineral compositions are calculated by using a combination of powder XRD, TGA, FTIR, and ICP-OES analysis. Adsorption capacities of hydroxy nickel carbonate compound observed from Rubotherm magnetic suspension sorption apparatus has shown highest performance among the other components that were investigated in this work (1.72 mmol CO(2)/g adsorbent at 175 bar and 316 K).

20.
J Phys Chem B ; 114(41): 13241-8, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20879753

RESUMO

Aramid (Ar), produced from the reaction of aromatic diamines and diacid chloride, was reactively compatibilized with amino-functionalized polystyrene (APS) to explore blend morphology and interfacial cohesion. Two blend systems, Ar/PS and Ar/APS, were investigated over a range of pristine polystyrene (PS) or modified APS ratios. Morphology and thermal and mechanical properties were probed to evaluate the effect of amine units of APS on the compatibility with Ar. π-π stacking interactions in tandem with the random distribution of graft attachment locations and polydispersity of graft length in Ar-g-APS copolymer, aided merger of unreacted chains to drive molecular self-assembly process thus fortifying the nanostructured blends. Considerable augmentation of the blend morphology and thermal stability was achieved by incorporation of reactivity into Ar/APS system. A 20 wt % APS-containing blend was found to demonstrate optimum mechanical reinforcement, complemented by the optimal, thermal, and morphological profiles of the same blend. Future prospects are envisaged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...