Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 10(6): 1925-1935, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37363634

RESUMO

Lattice resonances are collective electromagnetic modes supported by periodic arrays of metallic nanostructures. These excitations arise from the coherent multiple scattering between the elements of the array and, thanks to their collective origin, produce very strong and spectrally narrow optical responses. In recent years, there has been significant effort dedicated to characterizing the lattice resonances supported by arrays built from complex unit cells containing multiple nanostructures. Simultaneously, periodic arrays with chiral unit cells, made of either an individual nanostructure with a chiral morphology or a group of nanostructures placed in a chiral arrangement, have been shown to exhibit lattice resonances with different responses to right- and left-handed circularly polarized light. Motivated by this, here, we investigate the lattice resonances supported by square bipartite arrays in which the relative positions of the nanostructures can vary in all three spatial dimensions, effectively functioning as 2.5-dimensional arrays. We find that these systems can support lattice resonances with almost perfect chiral responses and very large quality factors, despite the achirality of the unit cell. Furthermore, we show that the chiral response of the lattice resonances originates from the constructive and destructive interference between the electric and magnetic dipoles induced in the two nanostructures of the unit cell. Our results serve to establish a theoretical framework to describe the optical response of 2.5-dimensional arrays and provide an approach to obtain chiral lattice resonances in periodic arrays with achiral unit cells.

2.
ACS Omega ; 7(35): 31431-31441, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092601

RESUMO

Periodic arrays of metallic nanostructures support collective lattice resonances, which give rise to optical responses that are, at the same time, stronger and more spectrally narrow than those of the localized plasmons of the individual nanostructures. Despite the extensive research effort devoted to investigating the optical properties of lattice resonances, the majority of theoretical studies have analyzed them under plane-wave excitation conditions. Such analysis not only constitutes an approximation to realistic experimental conditions, which require the use of finite-width light beams, but also misses a rich variety of interesting behaviors. Here, we provide a comprehensive study of the response of periodic arrays of metallic nanostructures when excited by finite-width light beams under both paraxial and nonparaxial conditions. We show how as the width of the light beam increases, the response of the array becomes more collective and converges to the plane-wave limit. Furthermore, we analyze the spatial extent of the lattice resonance and identify the optimum values of the light beam width to achieve the strongest optical responses. We also investigate the impact that the combination of finite-size effects in the array and the finite width of the light beam has on the response of the system. Our results provide a solid theoretical framework to understand the excitation of lattice resonances by finite-width light beams and uncover a set of behaviors that do not take place under plane-wave excitation.

3.
Phys Rev Lett ; 126(19): 193601, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34047587

RESUMO

The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this process. Using this formalism, we identify the fundamental principles that determine the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics. Our results provide an elegant and precise approach to efficiently analyze the temporal dynamics of the near-field radiative heat transfer in systems containing a large number of nanoparticles.

4.
ACS Nano ; 14(9): 11876-11887, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32794729

RESUMO

Lattice resonances, the collective modes supported by periodic arrays of metallic nanoparticles, give rise to very strong and spectrally narrow optical responses. Thanks to these properties, which emerge from the coherent multiple scattering enabled by the periodic ordering of the array, lattice resonances are used in a variety of applications such as nanoscale lasing and biosensing. Here, we investigate the lattice resonances supported by bipartite nanoparticle arrays. We find that, depending on the relative position of the two particles within the unit cell, these arrays can support lattice resonances with a super- or subradiant character. While the former result in large values of reflectance with broad lineshapes due to the increased radiative losses, the latter give rise to very small linewidths and maximum absorbance, consistent with a reduction of the radiative losses. Furthermore, by analyzing the response of arrays with finite dimensions, we demonstrate that the subradiant lattice resonances of bipartite arrays require a much smaller number of elements to reach a given quality factor than the lattice resonances of arrays with single-particle unit cells. The results of this work, in addition to advancing our knowledge of the optical response of periodic arrays of nanostructures, provide an efficient approach to obtain narrow lattice resonances that are robust to fabrication imperfections.

5.
ACS Nano ; 13(9): 10682-10693, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31487460

RESUMO

Periodic arrays are an exceptionally interesting arrangement for metallic nanostructures because of their ability to support collective lattice resonances. These modes, which arise from the coherent multiple scattering enabled by the lattice periodicity, give rise to very strong and spectrally narrow optical responses. Here, we investigate the enhancement of the near-field produced by the lattice resonances of arrays of metallic nanoparticles when illuminated with a plane wave. We find that, for infinite arrays, this enhancement can be made arbitrarily large by appropriately designing the geometrical characteristics of the array. On the other hand, in the case of finite arrays, the near-field enhancement is limited by the number of elements of the array that interact coherently. Furthermore, we show that, as the near-field enhancement increases, the length scale over which it extends above and below the array becomes larger and its spectral linewidth narrows. We also analyze the impact that material losses have on these behaviors. As a direct application of our results, we investigate the interaction between a nanoparticle array and a dielectric slab placed a certain distance above it and show that the extraordinary near-field enhancement produced by the lattice resonance can lead to very strong interactions, even at significantly large separations. This work provides a detailed characterization of the limits of the near-field produced by lattice resonances and, therefore, advances our knowledge of the optical response of periodic arrays of nanostructures, which can be used to design and develop applications exploiting the extraordinary properties of these systems.

6.
Opt Lett ; 42(20): 4143-4146, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29028033

RESUMO

Surface plasmon polaritons (SPPs) have emerged as powerful tools for guiding and manipulating light below the diffraction limit. In this context, the availability of flat top SPP beams displaying a constant transversal profile can allow for uniform excitation and coupling scenarios, thus opening the door to developing novel applications that cannot be achieved using conventional Gaussian SPP beams. Here, we present a rigorous theoretical description of flat top SPP beams propagating along flat metal-dielectric interfaces. This is accomplished through the use of Hermite-Gaussian SPP modes that constitute a complete basis set for the solutions of Maxwell's equations for a metal-dielectric interface in the paraxial approximation. We provide a comprehensive analysis of the evolution of the transversal profiles of these beams as they propagate, which is complemented with the study of the width and kurtosis parameters. Our results serve to enlarge the capabilities of surface plasmon polaritons to control and manipulate light below the diffraction limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...