Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732209

RESUMO

One of the primary complications in generating physiologically representative skin tissue is the inability to integrate vasculature into the system, which has been shown to promote the proliferation of basal keratinocytes and consequent keratinocyte differentiation, and is necessary for mimicking representative barrier function in the skin and physiological transport properties. We created a 3D vascularized human skin equivalent (VHSE) with a dermal and epidermal layer, and compared keratinocyte differentiation (immunomarker staining), epidermal thickness (H&E staining), and barrier function (transepithelial electrical resistance (TEER) and dextran permeability) to a static, organotypic avascular HSE (AHSE). The VHSE had a significantly thicker epidermal layer and increased resistance, both an indication of increased barrier function, compared to the AHSE. The inclusion of keratin in our collagen hydrogel extracellular matrix (ECM) increased keratinocyte differentiation and barrier function, indicated by greater resistance and decreased permeability. Surprisingly, however, endothelial cells grown in a collagen/keratin extracellular environment showed increased cell growth and decreased vascular permeability, indicating a more confluent and tighter vessel compared to those grown in a pure collagen environment. The development of a novel VHSE, which incorporated physiological vasculature and a unique collagen/keratin ECM, improved barrier function, vessel development, and skin structure compared to a static AHSE model.


Assuntos
Colágeno , Hidrogéis , Queratinócitos , Queratinas , Pele , Humanos , Hidrogéis/química , Colágeno/química , Colágeno/metabolismo , Queratinócitos/metabolismo , Queratinócitos/citologia , Pele/metabolismo , Pele/irrigação sanguínea , Queratinas/metabolismo , Diferenciação Celular , Proliferação de Células , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo , Células Cultivadas
2.
Bioengineering (Basel) ; 10(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36829759

RESUMO

This study presents a multilayer in vitro human skin platform to quantitatively relate predicted spatial time-temperature history with measured tissue injury response. This information is needed to elucidate high-temperature, short-duration burn injury kinetics and enables determination of relevant input parameters for computational models to facilitate treatment planning. Multilayer in vitro skin platforms were constructed using human dermal keratinocytes and fibroblasts embedded in collagen I hydrogels. After three seconds of contact with a 50-100 °C burn tip, ablation, cell death, apoptosis, and HSP70 expression were spatially measured using immunofluorescence confocal microscopy. Finite element modeling was performed using the measured thermal characteristics of skin platforms to determine the temperature distribution within platforms over time. The process coefficients for the Arrhenius thermal injury model describing tissue ablation and cell death were determined such that the predictions calculated from the time-temperature histories fit the experimental burn results. The activation energy for thermal collagen ablation and cell death was found to be significantly lower for short-duration, high-temperature burns than those found for long-duration, low-temperature burns. Analysis of results suggests that different injury mechanisms dominate at higher temperatures, necessitating burn research in the temperature ranges of interest and demonstrating the practicality of the proposed skin platform for this purpose.

3.
Bioengineering (Basel) ; 9(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36290526

RESUMO

Keratinocytes undergo a complex process of differentiation to form the stratified stratum corneum layer of the skin. In most biomimetic skin models, a 3D hydrogel fabricated out of collagen type I is used to mimic human skin. However, native skin also contains keratin, which makes up 90% of the epidermis and is produced by the keratinocytes present. We hypothesized that the addition of keratin (KTN) in our collagen hydrogel may aid in the process of keratinocyte differentiation compared to a pure collagen hydrogel. Keratinocytes were seeded on top of a 100% collagen or 50/50 C/KTN hydrogel cultured in either calcium-free (Ca-free) or calcium+ (Ca+) media. Our study demonstrates that the addition of keratin and calcium in the media increased lysosomal activity by measuring the glucocerebrosidase (GBA) activity and lysosomal distribution length, an indication of greater keratinocyte differentiation. We also found that the presence of KTN in the hydrogel also increased the expression of involucrin, a differentiation marker, compared to a pure collagen hydrogel. We demonstrate that a combination (i.e., containing both collagen and kerateine or "C/KTN") hydrogel was able to increase keratinocyte differentiation compared to a pure collagen hydrogel, and the addition of calcium further increased the differentiation of keratinocytes. This multi-protein hydrogel shows promise in future models or treatments to increase keratinocyte differentiation into the stratum corneum.

4.
J Burn Care Res ; 43(6): 1260-1270, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35863690

RESUMO

Thermal burn injuries are still a serious public health concern in the United States, due to the initial insult and resulting comorbidities. Burned patients are increasingly susceptible to colonization by endogenous and exogenous microorganisms after having lost skin, which acts as the primary protective barrier to environmental contaminants. Furthermore, the onset of additional pathophysiologies, specifically sepsis, becomes more likely in burned patients compared to other injuries. Despite improvements in the early care of burn patients, infections, and sepsis, these pathophysiologies remain major causes of morbidity and mortality and warrant further investigation of potential therapies. Vitamin E may be one such therapy. We aimed to identify publications of studies that evaluated the effectiveness of vitamin E as it pertains to thermal burn injuries, infection, and sepsis. Several investigations ranging from in vitro bench work to clinical studies have examined the impact on, or influence of, vitamin E in vitro, in vivo, and in the clinical setting. To the benefit of subjects it has been shown that enteral or parenteral vitamin E supplementation can prevent, mitigate, and even reverse the effects of thermal burn injuries, infection, and sepsis. Therefore, a large-scale prospective observational study to assess the potential benefits of vitamin E supplementation in patients is warranted and could result in clinical care practice paradigm changes.


Assuntos
Queimaduras , Sepse , Humanos , Queimaduras/terapia , Vitamina E , Estudos Prospectivos , Pele , Estudos Observacionais como Assunto
5.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456921

RESUMO

One of the promising approaches to facilitate healing and regenerative capacity includes the application of growth-factor-loaded biomaterials. Human platelet lysate (hPL) derived from platelet-rich plasma through a freeze-thaw process has been used as a growth factor rich therapeutic in many regenerative applications. To provide sustained local delivery of the hPL-derived growth factors such as epidermal growth factor (EGF), the hPL can be loaded into biomaterials that do not degrade rapidly in vivo. Keratin (KSO), a strong filamentous protein found in human hair, when formulated as a hydrogel, is shown to sustain the release of drugs and promote wound healing. In the current study, we created a KSO biomaterial that spontaneously forms a hydrogel when rehydrated with hPL that is capable of controlled and sustained release of pro-regenerative molecules. Our study demonstrates that the release of hPL is controlled by changing the KSO hydrogel and hPL-loading concentrations, with hPL loading concentrations having a greater effect in changing release profiles. In addition, the 15% KSO concentration proved to form a stable hydrogel, and supported cell proliferation over 3 days without cytotoxic effects in vitro. The hPL-loaded keratin hydrogels show promise in potential applications for wound healing with the sustained release of pro-regenerative growth factors with easy tailoring of hydrogel properties.


Assuntos
Hidrogéis , Queratinas , Materiais Biocompatíveis/farmacologia , Preparações de Ação Retardada/farmacologia , Humanos , Hidrogéis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Queratinas/farmacologia , Cicatrização
6.
Int J Hyperthermia ; 38(1): 830-845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34058945

RESUMO

Objective: To determine whether the addition of kerateine (reduced keratin) in rat tail collagen type I hydrogels increases thermal stability and changes material properties and supports cell growth for use in cellular hyperthermia studies for tumor treatment.Methods: Collagen type I extracted from rat tail tendon was combined with kerateine extracted from human hair fibers. Thermal, mechanical, and biocompatibility properties and cell behavior was assessed and compared to 100% collagen type I hydrogels to demonstrate their utility as a tissue model for 3D in vitro testing.Results: A combination (i.e., containing both collagen 'C/KNT') hydrogel was more thermally stable than pure collagen hydrogels and resisted thermal degradation when incubated at a hyperthermic temperature of 47°C for heating durations up to 60 min with a higher melting temperature measured by DSC. An increase in the storage modulus was only observed with an increased collagen concentration rather than an increased KTN concentration; however, a change in ECM structure was observed with greater fiber alignment and width with an increase in KTN concentration. The C/KTN hydrogels, specifically 50/50 C/KTN hydrogels, also supported the growth and of fibroblasts and MDA-MB-231 breast cancer cells similar to those seeded in 100% collagen hydrogels.Conclusion: This multi-protein C/KTN hydrogel shows promise for future studies involving thermal stress studies without compromising the 3D ECM environment or cell growth.


Assuntos
Matriz Extracelular , Hidrogéis , Animais , Proliferação de Células , Colágeno , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...