Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 21(1)2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38359457

RESUMO

Objective. Motor imagery-based brain-computer interaction (MI-BCI) is a novel method of achieving human and external environment interaction that can assist individuals with motor disorders to rehabilitate. However, individual differences limit the utility of the MI-BCI. In this study, a personalized MI prediction model based on the individual difference of event-related potential (ERP) is proposed to solve the MI individual difference.Approach.A novel paradigm named action observation-based multi-delayed matching posture task evokes ERP during a delayed matching posture task phase by retrieving picture stimuli and videos, and generates MI electroencephalogram through action observation and autonomous imagery in an action observation-based motor imagery phase. Based on the correlation between the ERP and MI, a logistic regression-based personalized MI prediction model is built to predict each individual's suitable MI action. 32 subjects conducted the MI task with or without the help of the prediction model to select the MI action. Then classification accuracy of the MI task is used to evaluate the proposed model and three traditional MI methods.Main results.The personalized MI prediction model successfully predicts suitable action among 3 sets of daily actions. Under suitable MI action, the individual's ERP amplitude and event-related desynchronization (ERD) intensity are the largest, which helps to improve the accuracy by 14.25%.Significance.The personalized MI prediction model that uses the temporal ERP features to predict the classification accuracy of MI is feasible for improving the individual's MI-BCI performance, providing a new personalized solution for the individual difference and practical BCI application.


Assuntos
Interfaces Cérebro-Computador , Individualidade , Humanos , Imaginação , Potenciais Evocados , Eletroencefalografia/métodos
2.
J Neural Eng ; 20(1)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36645915

RESUMO

Objective. Motor imagery (MI)-based brain-computer interfaces (BCIs) provide an additional control pathway for people by decoding the intention of action imagination. The way people imagine greatly affects MI-BCI performance. Action itself is one of the factors that influence the way people imagine. Whether the different actions cause a difference in the MI performance is unknown. What is more important is how to manifest this action difference in the process of imagery, which has the potential to guide people to use their individualized actions to imagine more effectively.Approach.To explore action differences, this study proposes a novel paradigm named as action observation based delayed matching posture task. Ten subjects are required to observe, memorize, match, and imagine three types of actions (cutting, grasping and writing) given by visual images or videos, to accomplish the phases of encoding, retrieval and reinforcement of MI. Event-related potential (ERP), MI features, and classification accuracy of the left or the right hand are used to evaluate the effect of the action difference on the MI difference.Main results.Action differences cause different feature distributions, resulting in that the accuracy with high event-related (de)synchronization (ERD/ERS) is 27.75% higher than the ones with low ERD/ERS (p< 0.05), which indicates that the action difference has impact on the MI difference and the BCI performance. In addition, significant differences in the ERP amplitudes exists among the three actions: the amplitude of P300-N200 potential reaches 9.28µV of grasping, 5.64µV and 5.25µV higher than the cutting and the writing, respectively (p< 0.05).Significance.The ERP amplitudes derived from the supplementary motor area shows positive correlation to the MI classification accuracy, implying that the ERP might be an index of the MI performance when the people is faced with action selection. This study demonstrates that the MI difference is related to the action difference, and can be manifested by the ERP, which is important for improving MI training by selecting suitable action; the relationship between the ERP and the MI provides a novel index to find the suitable action to set up an individualized BCI and improve the performance further.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Potenciais Evocados , Imagens, Psicoterapia , Imaginação , Postura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...