Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 174658, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992357

RESUMO

Effluent quality deterioration caused by seasonal low temperature is a great challenge to the application of anammox technology. Here, the effects of different graphene materials on anammox process were investigated under both optimal temperature and low-temperature. The batch tests showed that at 30 °C, 300 mg/L of reduced graphene oxide­sodium alginate gel (RGOSA) had the most significant promoting effect, reaching nitrogen removal efficiency (NRE) and nitrogen removal rate (NRR) of 95 % and 8.88 mgN/L/d, respectively. The changes of EPS secretion patterns and increasing of key enzymes activity might contribute to the enhanced anammox activity. During the long-term operation of anammox reactor, the NRE and NRR of the reactor decreased when the temperature dropped to 15 °C, showing an NRE of 50 %-57 % with the addition of 200 mg/L of reduced graphene oxide (RGO) and 40 %-45 % with the addition of 20 mg/L of RGO. Furthermore, specific anammox activity (SAA) of the RGO200 reactor at 15 °C increased by 57.1 % compared to the UASB reactor without graphene addition. Additionally, 16S rRNA and metagenomic analysis results revealed anammox bacteria Ca. Kuenenia was the dominant bacteria. Moreover, the RGO can significantly increase the relative abundance of N-converting functional genes. This study demonstrates the graphene materials can help anammox process adapting to low temperatures, providing a possible solution for the application of anammox technology.

2.
J Environ Sci (China) ; 138: 626-636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135426

RESUMO

Antibiotic wastewater contains a variety of pollutant stressors that can induce and promote antibiotic resistance (AR) when released into the environment. Although these substances are mostly in concentrations lower than those known to induce AR individually, it is possible that antibiotic wastewater discharge might still promote the AR transmission risk via additive or synergistic effects. However, the comprehensive effect of antibiotic wastewater on AR development has rarely been evaluated, and its treatment efficiency remains unknown. Here, samples were collected from different stages of a cephalosporin production wastewater treatment plant, and the potential AR induction effect of their chemical mixtures was explored through the exposure of the antibiotic-sensitive Escherichia coli K12 strain. Incubation with raw cephalosporin production wastewater significantly promoted mutation rates (3.6 × 103-9.3 × 103-fold) and minimum inhibition concentrations (6.0-6.7-fold) of E. coli against ampicillin and chloramphenicol. This may be attributed to the inhibition effect and oxidative stress of cephalosporin wastewater on E. coli. The AR induction effect of cephalosporin wastewater decreased after the coagulation sedimentation treatment and was completely removed after the full treatment process. A Pearson correlation analysis revealed that the reduction in the AR induction effect had a strong positive correlation with the removal of organics and biological toxicity. This indicates that the antibiotic wastewater treatment had a collaborative processing effect of conventional pollutants, toxicity, and the AR induction effect. This study illustrates the potential AR transmission risk of antibiotic wastewater and highlights the need for its adequate treatment.


Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/toxicidade , Escherichia coli , Resistência Microbiana a Medicamentos/genética , Cefalosporinas/toxicidade , Monobactamas/farmacologia
3.
J Environ Manage ; 348: 119237, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832290

RESUMO

Sulfide produced from sewers is considered one of the dominant threats to public health and sewer lifespan due to its toxicity and corrosiveness. In this study, we developed an environmentally friendly strategy for gaseous sulfide control by enriching indigenous sulfur-oxidizing bacteria (SOB) from sewer sediment. Ceramics acted as bio-carriers for immobilizing SOB for practical use in a lab-scale sewer reactor. 16 S rRNA gene sequences revealed that the SOB consortium was successfully enriched, with Thiobacillus, Pseudomonas, and Alcaligenes occupying a dominant abundance of 64.7% in the microbial community. Metabolic pathway analysis in different acclimatization stages indicates that microorganisms could convert thiosulfate and sulfide into elemental sulfur after enrichment and immobilization. A continuous experiment in lab-scale sewer reactors confirmed an efficient result for sulfide removal with hydrogen sulfide reduction of 43.9% and 85.1% under high-sulfur load and low-sulfur load conditions, respectively. This study shed light on the promising application for sewer sulfide control by biological sulfur oxidation strategy.


Assuntos
Sulfeto de Hidrogênio , Esgotos , Sulfetos/metabolismo , Bactérias/metabolismo , Enxofre , Oxirredução
4.
J Hazard Mater ; 460: 132318, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37672995

RESUMO

Biodegradable microplastics (BMPs) and cadmium (Cd) are posing threats to agro-systems especially to plants and current studies mostly used virgin BMPs to explore their ecological effects. However, effects of naturally aged BMPs and their combined effects with Cd on pakchoi are yet to be unraveled. Therefore, this study incubated naturally aged polylactic acid (PLA) MPs through soil aging process and investigated the single and combined effects of Cd and PLA MPs (virgin and aged) on pakchoi (Brassica rapa subsp. chinensis) morphology, antioxidant systems and soil microbial activities. Our results found that after being deposited in soil for six months, aged PLA (PLAa) MPs formed with a fractured surface, demonstrating more detrimental effects on pakchoi than virgin ones. PLA/PLAa MPs and Cd stunted pakchoi growth, caused oxidative stress and altered the biophysical environment in soil, separately. Moreover, co-existence of PLA/PLAa MPs and Cd caused greater damages to pakchoi than applied alone. The co-presence of PLAa MPs and Cd inhibited pakchoi biomass accumulation rate by 92.2 % compared with the no-addition group. The results unraveled here emphasized BMPs, especially aged BMPs, could trigger negative effects on agro-systems with heavy metals. These findings will give reference to future holistic assessments of BMPs' ecological effects.


Assuntos
Brassica rapa , Cádmio , Cádmio/toxicidade , Microplásticos , Plásticos , Poliésteres , Solo
5.
J Environ Manage ; 345: 118763, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683385

RESUMO

Decentralized wastewater treatment warrants considerable development in numerous countries and regions. Owing to the unique characteristics of high ammonia nitrogen concentrations and low carbon/nitrogen ratio, nitrogen removal is a key challenge in treating expressway service area sewage. In this study, an anoxic/oxic-moving bed biofilm reactor (A/O-MBBR) and a traditional A/O bioreactor were continuously operated for 115 days and their outcomes were compared to investigate the enhancement effect of carriers on the total nitrogen removal (TN) for expressway service area sewage. Results revealed that A/O-MBBR required lower dissolved oxygen, exhibited higher tolerance toward harsh conditions, and demonstrated better shock load resistance than traditional A/O bioreactor. The TN removal load of A/O-MBBR reached 181.5 g‧N/(m3‧d), which was 15.24% higher than that of the A/O bioreactor. Furthermore, under load shock resistance, the TN removal load of A/O-MBBR still reached 327.0 g‧N/(m3‧d), with a TN removal efficiency of above 80%. Moreover, kinetics demonstrated that the denitrification rate of the A/O-MBBR was 121.9% higher than that of the A/O bioreactor, with the anoxic tank biofilm contributing 60.9% of the total denitrification rate. Community analysis results revealed that the genera OLB8, uncultured_f_Saprospiraceae and OLB12 were the dominant in biofilm loaded on carriers, and OLB8 was the key for enhanced denitrification. FAPROTAX and PICRUSt2 analyses confirmed that more bacteria associated with nitrogen metabolism were enriched by the A/O-MBBR carriers through full denitrification metabolic pathway and dissimilatory nitrate reduction pathway. This study offers a perspective into the development of cost-effective and high-efficiency treatment solutions for expressway service area sewage.


Assuntos
Biofilmes , Reatores Biológicos , Desnitrificação , Esgotos , Nitrogênio
6.
Bioresour Technol ; 385: 129431, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37394044

RESUMO

Anaerobic digestion (AD) is promising for treating high-strength wastewater. However, the effect of operational parameters on microbial communities of AD with sulfate is not yet fully understood. To explore this, four reactors were operated under rapid- and slow-filling modes with different organic carbons. Reactors in the rapid-filling mode generally exhibited a fast kinetic property. For example, the degradation of ethanol was 4.6 times faster in ASBRER than in ASBRES, and the degradation of acetate was 11.2 times faster in ASBRAR than in ASBRAS. Nevertheless, reactors in the slow-filling mode could mitigate propionate accumulation when using ethanol as organic carbon. Taxonomic and functional analysis further supported that rapid- and slow-filling modes were suitable for the growth of r-strategists (e.g., Desulfomicrobium) and K-strategists (e.g., Geobacter), respectively. Overall, this study provides valuable insights into microbial interactions of AD processes with sulfate through the application of the r/K selection theory.


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Óxidos de Enxofre , Sulfatos/metabolismo , Etanol , Metano/metabolismo
7.
J Environ Manage ; 344: 118337, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343473

RESUMO

This review aims to provide a comprehensive understanding of the potential of CMs-dominated DIET in the degradation of recalcitrant organic pollutants in AD. The review covers the mechanisms and efficiencies of recalcitrant organic pollutant degradation by CMs-dominated DIET, the comparison of degradation pathways between DIET and chemical treatment, recent insights on DIET-enhanced degradation, and the evaluation of the potential and future development of CMs-dominated DIET. The review emphasizes the importance of coupled syntrophic microorganisms, electron flux, and physicochemical properties of CMs in enhancing the degradation performance of AD. Additionally, it highlights the advantages of DIET-led syntrophic metabolism over traditional oxidation technologies in terms of environmental friendliness and efficiency. Finally, the review acknowledges the potential risks associated with introducing CMs into AD systems and provides guidance for waste treatment and energy recovery.


Assuntos
Elétrons , Metano , Anaerobiose , Transporte de Elétrons , Reatores Biológicos
8.
Bioresour Technol ; 384: 129306, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37328012

RESUMO

Achieving simultaneous carbon and nitrogen removal with sludge-liquid separation in a single reactor offers a solution to land shortages and improves treatment efficiency in municipal wastewater treatment plants of megacities. This study proposes a novel air-lifting continuous-flow reactor configuration with an alternative-aeration strategy that creates multi-functional zones for anoxic, oxic, and settlement processes. The optimal operating conditions for the reactor include a long anoxic hydraulic retention time, low dissolved oxygen (DO) in the oxic zone, and no specific reflux for external nitrifying liquid, which exhibit a high nitrogen removal efficiency of over 90% in treating real sewage with C/N < 4 in the pilot-scale study. Results show that a high sludge concentration and a low DO concentration facilitate simultaneous nitrification and denitrification, and a well mixing of sludge and substrate in different reaction zones promotes mass transfer and microbial activity. The long-term operation enriches functional microbes for carbon storage and nutrient removal.


Assuntos
Esgotos , Águas Residuárias , Nitrificação , Desnitrificação , Oxigênio , Remoção , Reatores Biológicos , Nitrogênio/análise , Carbono , Eliminação de Resíduos Líquidos/métodos
9.
Sci Total Environ ; 889: 164192, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196953

RESUMO

The study assessed the occurrence and distribution of microbial community and antibiotic resistance genes (ARGs) in food waste, anaerobic digestate, and paddy soil samples, and revealed the potential hosts of ARGs and factors influencing their distribution. A total of 24 bacterial phyla were identified, of which 16 were shared by all samples, with Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria accounting for 65.9-92.3 % of the total bacterial community. Firmicutes was the most abundant bacteria in food waste and digestate samples, accounting for 33-83 % of the total microbial community. However, in paddy soil samples with digestate, Proteobacteria had the highest relative abundance of 38-60 %. Further, 22 ARGs were detected in food waste and digestate samples, with multidrug, macrolide-lincosamide-streptogramin (MLS), bacitracin, aminoglycoside, tetracycline, vancomycin, sulfonamide, and rifamycin resistance genes being the most abundant and shared by all samples. The highest total relative abundance of ARGs in food waste, digestate, and soil without and with digestate was detected in samples from January 2020, May 2020, October 2019, and May 2020, respectively. The MLS, vancomycin, tetracycline, aminoglycoside, and sulfonamide resistance genes had higher relative abundance in food waste and anaerobic digestate samples, whereas multidrug, bacteriocin, quinolone, and rifampin resistance genes were more abundant in paddy soil samples. Redundancy analysis demonstrated that aminoglycoside, tetracycline, sulfonamide, and rifamycin resistance genes were positively correlated with total ammonia nitrogen and pH of food waste and digestate samples. Vancomycin, multidrug, bacitracin, and fosmidomycin resistance genes had positive correlations with potassium, moisture, and organic matter in soil samples. The co-occurrence of ARG subtypes with bacterial genera was investigated using network analysis. Actinobacteria, Proteobacteria, Bacteroidetes, and Acidobacteria were identified as potential hosts of multidrug resistance genes.


Assuntos
Microbiota , Eliminação de Resíduos , Rifamicinas , Antibacterianos/farmacologia , Alimentos , Genes Bacterianos , Vancomicina , Bacitracina , Solo , Anaerobiose , Bactérias , Resistência Microbiana a Medicamentos/genética , Aminoglicosídeos , Tetraciclinas
10.
Bioresour Technol ; 374: 128735, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36781145

RESUMO

This study performed a long-term operation to achieve efficient medium-chain fatty acids (MCFAs) production by anaerobic fermentation of food waste without external electron donors. The results show that total MCFAs reached the highest concentration of 29,886.10 mg COD/L, and n-caproate was the primary product, reaching the current maximum concentration of 28,191.66 mg COD/L. Microbial composition analysis demonstrated Lactobacillus, Bifidobacterium, Sporanaerobacter, and Caproiciproducens constituted the core community throughout the process. Metagenomic analysis suggested that two pathways, reverse ß-oxidization (RBO) and fatty acid biosynthesis (FAB), were observed, and the FAB pathway was the main CE pathway. Unclassified_f_Ruminococcaceae and Limosilactobacillus were the main participants in the FAB pathway. This study is expected to provide new insights into MCFAs production from organic waste.


Assuntos
Alimentos , Eliminação de Resíduos , Humanos , Fermentação , Anaerobiose , Elétrons , Ácidos Graxos
11.
Environ Sci Pollut Res Int ; 30(11): 30766-30778, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36441318

RESUMO

Rainfall runoff and combined sewer overflow (CSO) converge with organic waste, nutrients, and microbes from the ground and wastewater. These pollutants promote the spread and transformation of antibiotic resistance genes (ARGs). In this study, four rainfall runoff and one CSO outfall were chosen, and samples were collected to explore the occurrence and distribution of ARGs. The ARGs were extracted from suspended solids and analyzed using metagenomic sequencing. A total of 888 ARG subtypes, belonging to 17 ARG types, were detected in all samples. Eleven ARG types were shared by all the samples. Multidrug resistance genes had the highest relative abundance. Their total relative abundance reached 1.07 ratio (ARG copy number/16S rRNA gene copy number) and comprised 46.6% of all the ARGs. In all samples, the CSO outfall had the highest total relative abundance (8.25 × 10-1 ratio) of ARGs, with a ratio ranging ND (not detected)-3.78 × 10-1 ratio. Furthermore, the relationship between ARG types and environmental factors was determined using redundancy analysis. The results showed that chemical organic demand (COD) and bacterial abundance were positively correlated with most ARG types, including multidrug, bacitracin, aminoglycoside, ß-lactam, tetracycline, and sulfonamide. NH3-N, TN, and TP were positively correlated with rifamycin, fosmidomycin, and vancomycin resistance genes. The relationship among the ARG subtypes was investigated using network analyses. The multidrug resistance gene subtypes had the highest frequency of co-occurrence. This study provides insights into the occurrence and distribution of ARGs under non-point source pollution and may contribute to the control of ARGs.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Bactérias/genética , Resistência Microbiana a Medicamentos/genética
12.
J Environ Sci (China) ; 124: 330-349, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182143

RESUMO

With the continuous development of nanomaterials in recent years, the application of nanocatalysts in catalytic ozone oxidation has attracted more and more researchers' attention due to their excellent catalytic properties. In this review, we systematically summarized the current research status of nanocatalysts mainly involving material categories, mechanisms and catalytic efficiency. Based on summary and analysis, we found most of the reported nanocatalysts were in the stage of laboratory research, which was caused by the nanocatalysts defects such as easy aggregation, difficult separation, and easy leakage. These defects might result in severe resource waste, economic loss and potentially adverse effects imposed on the ecosystem and human health. Aiming at solving these defects, we further analyzed the reasons and the existing reports, and revealed that coupling nano-catalyst and membrane, supported nanocatalysts and magnetic nanocatalysts had promising potential in solving these problems and promoting the actual application of nanocatalysts in wastewater treatment. Furthermore, the advantages, shortages and our perspectives of these methods are summarized and discussed.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Catálise , Ecossistema , Humanos , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos
13.
Bioresour Technol ; 363: 127973, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36122846

RESUMO

Hydrogenotrophic denitrification (HD) is a promising autotrophic biological process for advanced nitrogen removal, while sludge granulation was seldom reported. This study aimed to cultivate granular sludge to improve capacity and stability of HD process. The resulting HD granular sludge performed high nitrogen removal rate (NRR) of 0.42 ± 0.0.4 kgN/(m3·d) with low accumulation of nitrite and nitrous oxide emission. HD granular sludge reactor performed over 3 times higher NRR compared to that in HD fixed-bed biofilm reactor (0.13 ± 0.01 kgN/(m3·d). Besides, granular sludge reactor could treat groundwater well even at the low temperature of 15 °C. The dominant genera were Hydrogenophaga and Comamonas in granular sludge, and Dechloromonas in biofilm. Noticeably, sulfate in the groundwater stimulated the growth of sulfur converting microbes with increasing abundances of sulfite reductase gene and sulfate-reducing bacteria Desulfovibrio. This study highlights the potential implementation of HD process in granular sludge reactor for advance nitrogen removal from impaired groundwater.


Assuntos
Desnitrificação , Esgotos , Reatores Biológicos , Nitritos , Nitrogênio , Óxido Nitroso , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Esgotos/microbiologia , Sulfatos , Enxofre
14.
Huan Jing Ke Xue ; 43(7): 3664-3671, 2022 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-35791549

RESUMO

Microplastics (MPs), which are widely present in the natural environment, may be harmful to the growth and health of aquatic organisms, though studies in this area are lacking. In this study, the crucian carp (Carassius carassius), a type of omnivorous freshwater fish, was chosen as the target, which was fed with fish food containing different concentrations of MPs for a 30-day food exposure experiment to study the effects of MPs on crucian growth, liver damage, and gut microbiome composition. Compared with that in the control group, the body length of the crucians in the environmental groups did not change significantly. The weight of the crucians in the low PE-MPs group increased significantly, but the weight of crucians in the medium and high PE-MPs groups decreased markedly. The liver tissues of the low PE-MPs group of crucians were basically normal, whereas crucians in the medium and high PE-MPs groups had varying degrees of liver damage, and crucians in the high PE-MPs group had the most serious liver damage. At the phylum level, Proteobacteria, Fusobacteria, Firmicutes, and Bacteroides were the dominant species in the gut of the crucians. Pathogens such as Staphylococcus and Ralstonia were present in the crucian gut of environmental groups. Alpha diversity results showed that the gut microbiome of crucians in the high PE-MPs group was the most abundant. PCoA results indicated that the gut microbiome of crucians in the control and environmental groups had obvious clustering characteristics.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Animais , Firmicutes , Fígado , Plásticos
15.
Huan Jing Ke Xue ; 43(7): 3656-3663, 2022 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-35791548

RESUMO

Microplastics are emerging contaminants, which can also absorb other contaminants, threatening the health of river ecosystems. However, research on the pollution of microplastics in rivers in northern China is still lacking. In this study, based on the sampling and analysis of water samples in 19 sites in six rivers in Tongzhou district, Beijing, the composition, spatial variation, and potential sources of microplastics were explored. The results showed that all sites were contaminated by microplastics, and the abundance of microplastics in the Xiaozhong River was the highest among all sites (3.50×104 n·m-3), which was 4.04 times that in the Yunchaojian River. The proportion of microplastics with particle sizes smaller than 2000 µm was 90.49%, and microplastics with particle sizes larger than 4000 µm were only found in two out of 19 sampling sites. The microplastics were fiber, film, fragment, and granule shaped. The proportion of fiber microplastics was the highest (90.23%) among all shapes. Most (84.29%) of the microplastics were transparent and blue. Rayon was the most common microplastic in each site, and its proportion in each site was over 66.67%. The proportions of other types of microplastics differed largely among different sites. Spatially, the abundance and types of microplastics in the upper reaches were higher than those in the lower reaches. According to spatial variations in shapes, types, colors, and abundance of microplastics, the potential sources of microplastics were identified. The potential sources of fiber microplastics were washing clothing and using fishing gear and dust-proof nets.


Assuntos
Microplásticos , Rios , Poluentes Químicos da Água , Pequim , Ecossistema , Monitoramento Ambiental/métodos , Plásticos/análise , Análise Espacial , Poluentes Químicos da Água/análise
16.
Sci Total Environ ; 830: 154803, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35341845

RESUMO

Heterogeneous catalytic oxidation, as an efficient advanced treatment technology, has been gradually applied in industrial wastewater treatment. The fixed bed technique is one of the most popular catalytic ozonation methods. However, few studies have concentrated on the long-term operation effects on catalysts. In this study, we conducted long-term (~5 years) observations of the operation of the largest petrochemical wastewater treatment plant (treatment capacity 120,000 m3/d) with catalytic ozonation technology in China. A commercial catalyst, which uses Al2O3 pellets supporting copper oxide was applied in this plant. The results showed that the catalytic efficiency gradually decreased from 60.65% to 25.98% since 2018, and the ozone dosage to COD removal ratio (ozone/COD) also increased from 0.82 to 1.93 mg/mg as the running time continued. By means of the comparison and characterization of fresh catalyst and used catalyst, a "mucus layer" was formed by the adsorption of negatively charged extracellular polymeric substances on the positively charged catalyst surface and the interception of the catalyst layer. The mucus layer significantly reduced the catalytic efficiency by isolating ozone with catalytic active sites and releasing extra organic contaminants during the catalytic process resulting in 53.97% TOC increase in the batch test. Meanwhile, regeneration experiments revealed that the TOC removal efficiency was 4.76% and 43.48% in presence of washed catalysts and calcinated catalysts, respectively. Compared with the fresh catalyst, 73% of the catalytic activity was recovered for calcinated catalyst. Consequently, this study provides much practical information, showing positive effects on the promotion of catalytic ozonation application in actual wastewater treatment.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Catálise , Ozônio/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
17.
Huan Jing Ke Xue ; 43(2): 795-802, 2022 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-35075853

RESUMO

Urban runoff pollution can carry pollutants into the receiving water through scouring and leaching, causing black color and odor or eutrophication. Understanding and mastering the characteristics of runoff pollution is a prerequisite for the effective control of runoff pollution. This study aimed to comprehensively analyze the temporal and spatial distribution characteristics of runoff pollution and the correlation between pollutants in the urban area of Langfang City. Rainfall runoff samples were collected seven times by setting up 14 sampling sites within the urban area. The suspended solids (SS), chemical oxygen demand (COD), N, P, fecal E. coli, anionic surfactants, volatile phenols, and Zn, Cr6+, As, Cu, etc. were analyzed. The source and distribution of pollutants were summarized and analyzed through principal component analysis and cluster analysis. The results showed that the concentration of pollutants in runoff in Langfang City varied greatly at different times and locations. The average ρ(SS) at each point ranged from 150-500 mg·L-1, and the average concentrations of COD, N, P, and fecal E. coli all exceeded those of the surface water standard Ⅴ. The average concentration of anionic surfactants, petroleum, and volatile phenols were between those of the surface water standard Ⅰ and standard Ⅳ. The concentrations of metal pollutants were relatively low. NH4+-N had a positive correlation with total nitrogen (TN), volatile phenols, and As. COD had a certain positive correlation with TN, total phosphorus (TP), Cr6+, and As, whereas fecal E. coli had a certain negative correlation with Zn and Cu. The organic matter, P, Cu, and SS were probably derived from vehicle tires and road surfaces. All sampling sites could be roughly divided into four types according to the features of pollution:mainly commercial service areas, residential areas, larger arterial roads, and small roads between communities. The pollution of runoff in Langfang City was relatively serious, especially that of COD, N, and P. This research provides important reference values for the control and regulation of runoff pollution in urban areas and other northern cities.


Assuntos
Movimentos da Água , Poluentes Químicos da Água , China , Cidades , Monitoramento Ambiental , Escherichia coli , Fósforo/análise , Chuva , Poluentes Químicos da Água/análise
18.
Sci Total Environ ; 807(Pt 1): 150732, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34606861

RESUMO

Anaerobic digestion is achieved through cooperation among various types of microorganisms, and the regulation of microbial communities is key to achieving stable system operation. In this study, the r/K selection theory was adopted to examine the system performance and microbial characteristics in anaerobic reactors with different operating modes (continuous-flow reactors, CFRs; sequencing batch reactors, SBRs) and sludge retention times (25 and 10 days). Four lab-scale reactors (CFR25d, CFR10d, SBR25d, and SBR10d) were operated. In the cycle reaction, CFR25d achieved the highest methane yield (678.0 mL/L) and methane production rate (140.8 mL/(L·h)); while those in CFR10d were the lowest, which could have been due to an accumulation of volatile fatty acids. CFR could wash out r-strategists efficiently, such as Methanosarcina. CFR25d and CFR10d significantly enriched the K-strategist Geobacter, with the relative abundances of 34.0% and 72.6%, respectively. In addition, the hydrogenotrophic methanogens of Methanolinea and Methanospirillum (K-strategists) dominated in CFR25d and CFR10d. Methanobacterium adapted to the diverse operational conditions, but the slow grower Methanosaeta only accounted for 0.9% in CFR10d. Failure to enrich propionate oxidizers resulted in a functional absence of propionate degradation in the CFRs.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Methanosarcina , Esgotos
19.
Chemosphere ; 287(Pt 4): 132457, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34610373

RESUMO

Lead (Pb) is the most widely used anode in zinc (Zn) electrowinning and other metallurgical industries. The resource loss and environmental pollution caused by Pb anode corrosion are urgent problems to be solved. A γ-MnO2 precoated anode was prepared successfully to reduce the Pb-containing pollutant. The size effects with its controllable preparation on an industrial scale were studied. Severe nonuniform distribution of γ-MnO2 film was observed with curbing the reduction of anode slime only 68%, when anode size increased from lab to industry. Nonuniform rate (R) and average thickness (d) were found to be the key indicators to determine the film structure distribution and their performance differences, which were random and difficult to be controlled in scale-up size. However, a controllable industrial γ-MnO2 precoated anodes (IMPA) fabricated through optimized current density (J0) and electrodeposition time (t) in our developed film-forming system. Then, the long-term performances of two IMPA with different indicators (IMPA-1: R = 34%, d = 108 µm, IMPA-2: R = 23%, d = 55 µm) were compared with the industrial typical Pb-based anode (ITPA). Of the three different anodes, the optimized IMPA-2 displayed the best performance. Within 24 d of electrowinning cycle, the corrosion inhibition effect and the anode slime reduction rate for IMPA-2 improved by 56% and 30% than IMPA-1, and improved by 100% and 91% than ITPA. Furthermore, the mechanism analysis of size effect change showed that R of IMPA was contributed to the local gas holdup distribution along the anode. Controlled size effect of uniform oxide film will have a future application prospect for the sustainability of industry, which provides an important cleaner production of Zn electrowinning and related hydrometallurgy industries.


Assuntos
Poluentes Ambientais , Zinco , Eletrodos , Chumbo , Compostos de Manganês , Metalurgia , Óxidos
20.
Bioresour Technol ; 343: 126144, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34673194

RESUMO

The effectiveness of producing n-caproate from food waste without external electron donors (EDs) was investigated through batch and semi-continuous fermentation. The maximum concentration of n-caproate reached 10,226.28 mg COD/L during semi-continuous fermentation. The specificity for n-caproate was the highest at 40.19 ± 3.95%, and the soluble COD conversion rate of n-caproate reached up to 22.50 ± 1.09% at the end of batch fermentation. The production of n-caproate was coupled with the generation of lactate as an ED to facilitate chain elongation reactions. When lactate was used as the only substrate, n-butyrate (64.12 ± 20.11%) markedly dominated the products, instead of n-caproate (0.63 ± 0.07%). Microbial community analysis revealed that Caproiciproducens, Rummeliibacillus, and Clostridium_sensu_stricto_12 were the key genera related to n-caproate production. In addition to n-caproate, n-butyrate dominated the products in batch and semi-continuous fermentation with a maximum specificity of 47.59 ± 3.39%. Clostridium_sensu_stricto_7 was committed to producing n-butyrate from lactate.


Assuntos
Caproatos , Eliminação de Resíduos , Reatores Biológicos , Elétrons , Fermentação , Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...