Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 674: 1-8, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908061

RESUMO

O3 phase layered oxides are highly attractive cathode materials for sodium-ion batteries because of their high capacity and decent initial Coulombic efficiency. However, their rate capability and long cycling life are unsatisfactory due to the narrow Na+ transfer channel and irreversible phase transitions of O3 phase during sodiation/desodiation process. Constructing O3/P2 multiphase structures has been proven to be an effective strategy to overcome these challenges. In this study, we synthesized bi-phasic structured O3/P2 Na(Ni2/9Fe1/3Cu1/9Mn1/3)1-xMnxO2 (x = 0.01, 0.02, 0.03, 0.04, 0.05) materials through Mn doping during sodiation process. Benefiting from surface P2 phase layer with the enhanced Na+ transfer dynamics and high structural stability, the Na(Ni2/9Fe1/3Cu1/9Mn1/3)0.98Mn0.02O2 (NFCM-M2) cathode delivers a reversible capacity of 139.1 mA h g-1 at 0.1 C, and retains 71.4 % of its original capacity after 300 cycles at 1 C. Our work provides useful guidance for designing multiphase cathodes and offers new insights into the structure-performance correlation for sodium-ion cathode materials.

2.
ACS Appl Mater Interfaces ; 13(41): 48720-48729, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612626

RESUMO

Ultrahigh Ni-rich layered oxides have been regarded as one of the most promising cathode candidates. However, cycling instability induced by interfacial reactions and irreversible H2-H3 lattice distortion is yet to be demonstrated by an effective strategy that could construct a stable grain interface and microstructure. Here, Ni-rich cathode LiNi0.92Co0.05Mn0.03O2 is modified by B and Ti to realize the synchronous regulation of a microstructure and the oxygen framework robustness. Compared with the large equiaxed crystalline grains for the pristine cathode, highly elongated grains with a strong radially oriented crystallographic texture in which the (003) facet is maximized are produced for Ti and B-modified LiNi0.92Co0.05Mn0.03O2. With the suppressed H2-H3 phase transition and cation mixing provided by radially oriented grains and turned local crystal oxygen framework robustness during cycling, the co-modified cathode exhibits enhanced Li+ diffusion kinetics and a capacity retention of 78.3% after 100 cycles, which outperformed the 38.5% for the pristine cathode. The improved cycling performance suggests the significance of the turned microstructure and local crystal structure in suppressing internal strain and crystal structure degradation. The synchronous realization of microstructure engineering and local crystal structure turning by optimal element combination would provide a heuristic solution for the construction of high perform Ni-rich cathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...