Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(4): 981-984, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359241

RESUMO

Self-homodyne coherent transmission has recently received extensive investigation as a coherent lite candidate for high-speed short-reach optical networks. In this Letter, we propose a weakly coupled mode-division-multiplexing (MDM) self-homodyne coherent scheme using a multiple-ring-core few-mode fiber, in which one of the modes transmits a self-homodyne local oscillator (LO) and the rest are utilized for carrying signals. Multiple rings of index perturbations in the fiber core are applied to achieve low modal crosstalk, allowing the signals and the remote LO to be transmitted independently. We experimentally demonstrate a 7.2-Tb/s (5.64-Tb/s net rate) self-homodyne coherent transmission with an 800-Gb/s data rate for each of the nine information-bearing modes formatted in 80-GBaud probabilistic constellation-shaped 64-quadrature-amplitude modulation. To the best of our knowledge, this is the first experimental demonstration of an MDM self-homodyne coherent transmission with up to 10 spatial modes. The proposed scheme may pave the way for future high-capacity data center interconnections.

2.
Opt Express ; 31(20): 31937-31945, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859007

RESUMO

Weakly-coupled mode division multiplexing (MDM) technique is a promising candidate for capacity enhancement of short-reach optical interconnections, for which the multiple-ring-core few-mode fiber (MRC-FMF) has been proven to be an effective design method to suppress distributed modal crosstalk. Similar to low chromatic-dispersion (CD) O-band transmission based on single-mode fibers (SMF), all the mode channels in a weakly-coupled FMF for short-reach applications should achieve low CD to support intensity-modulation/direct-detection (IM/DD) transmission. In this paper, we propose, for the first time to the best of our knowledge, an index perturbation method to adjust both effective index and CD of each mode in an MRC-FMF. Firstly, an accurate modeling method to model the relationship between SiO2-GeO2 material index and the germanium concentration at different wavelengths is proposed by analyzing the index characteristics of 4 kinds of germanium-doped fused silica SMFs at the same fabrication processing, which could be utilized to calculate the CD characteristics for an MRC-FMF with perturbed index profile. Then, based on the perturbation method considering the influences on both effective index and CD, a weakly-coupled low-CD MRC-FMF supporting 4 linearly-polarized (LP) modes is designed and fabricated. The measured minimum effective index difference min|Δneff| among all modes is larger than 1.3 × 10-3, and the CD values of all the modes lie between -6 and +6 ps/km/nm ranging from 1280 to 1320 nm, which agree well with the design. The 2-km transmission experiment indicates that the fabricated MRC-FMF could support stable digital-signal-processing (DSP)-free IM/DD transmission for all the 4 LP modes. This work is beneficial to the application of short-reach weakly-coupled MDM systems.

3.
Opt Lett ; 48(6): 1367-1370, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946929

RESUMO

With the increasing signal rates of a long-haul backbone dense-wavelength-division-multiplexing (DWDM) transmission system, e.g., from 100 Gb/s to 400 Gb/s and even to 800 Gb/s, optical path impairments simultaneously become more severe. Harmful factors being formerly insignificant become noticeable, e.g., nonlinear phase noise (NPN) on main DWDM channels induced by the cross-phase modulation (XPM) from the low-speed optical supervisory channel (OSC). Field trials show that a greater than 5.13-dB penalty can be observed on the shortest channel of 400G DP-16QAM-PCS over G.654.E links, which greatly degrades the overall transmission performance and limits the maximum reach. In this paper, we propose a dual-OSC structure with opposite signals to compensate for performance degradation caused by OSC-induced NPN. This method involves no extra digital signal processing (DSP), which is not only simple but also applicable for universal signal rates. By experimental demonstration, a 1.32-dB gain in Q (dB) for 200G DP-16QAM transmission over 1618-km G.652.D can be done, almost achieving the same performance as the no OSC case.

4.
Opt Lett ; 47(7): 1717-1720, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363716

RESUMO

In recent years, optical fiber distributed vibration sensors (DVSs) have received extensive investigation and play a significant role in different applications, such as structural health monitoring. In this Letter, we propose for the first time, to the best of our knowledge, a DVS mechanism based on linearly polarized mode coupling in weakly coupled few-mode fibers (FMFs), in which dynamic transverse stress induced by external vibration is measured with quantifiable and spatially resolvable mode coupling along the sensing FMF with ultralow inherent modal crosstalk. A swept-wavelength interferometer method is implemented and the involved data processing method is designed. A proof-of-concept DVS system is established and 5 Hz to 49 kHz frequency response, -50 dB detection sensitivity, and 22 m spatial resolution are successfully demonstrated based on a 9.6 km weakly coupled two-mode fiber. The wide frequency response over a long sensing length for the proposed scheme may extend the application range of DVS systems.

5.
Opt Express ; 30(2): 1675-1685, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209323

RESUMO

Fan-in/fan-out (FI/FO) device with low crosstalk is essential for weakly coupled short-reach optical interconnect based on multicore fibers (MCF), for which the laser-direct-writing (LDW) technique is one of the preferred fabrication schemes. In this paper, the influence of FI/FO crosstalk on short-reach intensity-modulation/direction-detection MCF optical interconnection is firstly evaluated, and the crosstalk related to different refractive-index profiles of waveguides and misalignment is analyzed for LDW-FI/FO devices. Then low-crosstalk compact LDW-FI/FO devices matching 8-core MCF are fabricated, adopting multiple-scan method for waveguides with a flat-top refractive-index profile and aberration correction method for precise alignment. Owing to the low crosstalk, 8×100-Gbps optical interconnection over 10-km MCF is experimentally demonstrated with only 0.5-dB penalty compared to 10-km G.652D single-mode fiber transmission. Simulation results indicate that the transmission reach can be further extended to over 40 km. The proposed prototype system with low crosstalk is promising for high-speed optical interconnection applications.

6.
Opt Express ; 30(4): 5868-5878, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209540

RESUMO

Mode-division multiplexing (MDM) technique based on few-mode fibers (FMFs) can achieve multiplicative growth in single-fiber capacity by using different linearly polarized (LP) modes or mode groups as spatial channels. However, its deployment is seriously impeded because multiple-input multiple-output digital signal processing (MIMO-DSP) with huge computational load must be adopted to combat intermodal crosstalk for long-haul FMF transmission. In this paper, we present an intermodal-MIMO-free MDM transmission scheme based on weakly coupled multiple-ring-core FMF, which achieves ultralow distributed modal crosstalk (DMC) so that the signal in each LP mode can be independently received by single-LP-mode MIMO-DSP even after hundreds-of-kilometer transmission. Evaluation method for the required DMC levels is proposed and different transmission reaches are investigated by simulation. By adopting an improved method for quantitative DMC measurement, we show that the required DMC level for long-haul transmission is feasible. Finally, we experimentally demonstrate 1800-km LP01/LP02 multiplexed transmission and 525-km LP01/LP21/LP02 multiplexed transmission only adopting 2×2 or 4×4 MIMO-DSP. The proposed scheme may pave the way to practical applications of long-haul MDM techniques for the first time.

7.
Chemosphere ; 287(Pt 2): 132175, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826903

RESUMO

Fe-based amorphous alloys have been found to be very efficient in the degradation of water pollutants due to their unique atomic arrangements with long-range disordered structure. In this work, Fe-B-C-Ti amorphous ribbons were successfully synthesized and showed high catalytic efficiency in the degradation of methylene blue (MB) under simulated sunlight and across a wide pH range. The catalytic efficiency was evaluated under different conditions to optimize the degradation performance. The amorphous ribbon Fe75B10C10Ti5 was found to exhibit the highest photocatalytic activity as explained by its optical and photoelectrochemical properties. It can degrade MB completely with low Fe-leaching and significant recyclability at pH close to a neutral range (pH 5). The degradation mechanisms can be explained in terms of photocatalytic activity along with the galvanic cell effect which contributed to the efficient MB degradation. This work provides a comprehensive idea for the synthesis of amorphous alloys by optimizing their elemental composition and also explains the catalytic activity of partially crystallized regions on the ribbon surface. The significant corrosion resistance and the quick degradation of MB in a wide pH range in a recyclable manner by these easily separable and highly efficient catalysts indicate great potential for their practical application.


Assuntos
Titânio , Catálise , Corrosão , Fotólise
8.
J Environ Sci (China) ; 105: 116-127, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34130829

RESUMO

Amorphous alloys are being newly applied in wastewater treatment because of their unique atomic packing structure. They possess excellent degradation efficiency, stability and reusability. In this work, Fe80Si10B10 and Fe83Si5B8P4 amorphous ribbons exhibited advanced catalytic performance for the degradation of Methyl Blue (MB) and Rhodamine B (RhB) dyes, and the color removal reach nearly 100% within 11 min for both the dyes. Compared with the Fe80Si10B10 amorphous ribbon, the Fe83Si5B8P4 ribbon showed higher degradation efficiency due to its lower reaction activation energy, higher electron transfer ability and higher Fe content, and the formation of the galvanic cell between the strong Fe-P bonds and the weak Fe-B bonds. It also exhibited high stability and reusability. The degradation efficiency was improved when the appropriate concentration of H2O2 is added. As regards the pH, high degradation efficiency was observed in acidic MB solution, but it decreased as the pH increased up to pH 7. The application of the electro-Fenton-like process is discussed, which can effectively improve the degradation performance in a nearly natural solution. This study presents a high efficiency low-cost catalyst for synthetic dye degradation and expands the functional applications of Fe-based amorphous alloys.


Assuntos
Corantes , Purificação da Água , Ligas , Catálise , Peróxido de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...