Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 426, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537013

RESUMO

BACKGROUND: Reproduction in most flowering plants may be limited because of the decreased visitation or activity of pollinators in fragmented habitats. Hedysarum scoparium Fisch. et Mey. is an arid region shrub with ecological importance. We explored the pollen limitation and seed set of Hedysarum scoparium in fragmented and restored environments, and examined whether pollen limitation is a significant limiting factor for seed set. We also compared floral traits and pollinator visitation between both habitats, and we determined the difference of floral traits and pollinators influenced reproductive success in Hedysarum scoparium. RESULTS: Our results indicated that supplementation with pollen significantly increased seed set per flower, which is pollen-limited in this species. Furthermore, there was greater seed set of the hand cross-pollination group in the restored habitat compared to the fragmented environment. More visits by Apis mellifera were recorded in the restored habitats, which may explain the difference in seed production between the fragmented and restored habitats. CONCLUSIONS: In this study, a positive association between pollinator visitation frequency and open flower number was observed. The findings of this study are important for experimentally quantifying the effects of floral traits and pollinators on plant reproductive success in different habitats.


Assuntos
Fabaceae/fisiologia , Flores/fisiologia , Pólen/fisiologia , Animais , China , Ecossistema , Polinização , Sementes/crescimento & desenvolvimento
2.
Front Plant Sci ; 10: 327, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984212

RESUMO

Haloxylon ammodendron (C. A. Mey.) Bunge is an ecologically important species in arid regions. Pollen limitation may decrease plant reproduction due to low levels of pollen transfer and inadequate pollen receipt. In arid regions, pollen limitations of many plant species may be influenced by habitat fragmentation. However, whether pollen limitation and pollinator visitation affect the pollination success of H. ammodendron (Amaranthaceae) in fragmented habitats still needs further study. In this study, we calculated the pollen limitation in natural and fragmented habitats to estimate the effect of habitat fragmentation on pollen limitation. In different habitats, we investigated the relationship between the number of open flowers and pollinator visiting frequency. In addition, we examined how habitat fragmentation affects pollination success through the influence of pollinator visitation rate on seed set. Our results indicated that pollen limitation was the important limiting factor for seed set in fragmented and natural habitats. The results showed higher pollinator visitation rates resulted in a higher percentage of seeds in both habitats. In H. ammodendron, Apis mellifera was found to be the dominant pollinator. These results may support the assertion that plants evolve traits to attract pollinators and pollinators increase their visiting frequency to better exploit the floral resources. We also determined that outcrossing was dominant in the breeding system and that wind pollination played an important role in pollination success. This study aims to contribute to a better understanding of how environmental heterogeneity affects pollen limitation, pollinator visitation, and pollination success in arid regions.

3.
Sci Total Environ ; 654: 1056-1063, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30841380

RESUMO

In many flowering plants, fragmented habitats may affect pollen limitation, pollinator behavior, and plant-pollinator interactions. Pollen limitation may decrease plant reproduction due to low levels of pollen transfer and inadequate pollen receipt. However, how fragmented habitats affect the pollen limitation and pollinator activity of Caragana korshinskii Kom. still needs further study. We designed a pollen supplementation treatment to understand how pollen limitation affects seed set. We calculated the visiting patterns and frequency of pollinators in different habitat types (natural and fragmented) to determine the effect of fragmented habitats on pollinator activity and on the pollination success of a desert-grassland shrub. Our results demonstrated that pollen supplementation was found to significantly increase seed set per flower, which is pollen-limited in the studied species. Moreover, the pollen limitation index in fragmented habitats was increased compared to that of natural habitats. Apis mellifera was found to be the dominant pollinator, with more pollinators and a higher visitation frequency of A. mellifera found in natural habitats compared to fragmented habitats. Our results showed that pollen limitation intensity was significantly correlated with the pollinator visitation frequency in the both habitats. Outcrossing was dominant in the breeding system, and insect pollination played a critical role in outcrossing. We found that fragmented habitats could affect pollinator activity, which might reduce pollen dispersal among flowers and the probability of outcrossing in the studied habitats.


Assuntos
Caragana/fisiologia , Ecossistema , Insetos/fisiologia , Polinização , Animais , Abelhas , Monitoramento Ambiental , Pólen
4.
Ecol Evol ; 8(17): 9007-9016, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30271562

RESUMO

Medicago sativa L. is an important cash crop in the arid region of northwest China. Pollinator activity is an essential aspect of pollination success, but the relationships between pollinator visitation rate and seed set still need further study of M. sativa. We investigated the following characteristics of M. sativa in natural and managed populations: floral traits, pollinator activity, and breeding system. Our results indicated the management could affect the number of flowers produced; however, there was no detectable effect on the seed set per flower. We found the percentage of seeds among pollinated flowers in the managed population was significantly higher than that in the natural population. Moreover, the increase in the proportion of pollinated flowers could significantly increase seed set per flower, and pollinator visitation rate was the important limiting factor for seed set in both populations. Andrena lebedevi Popov was found to be the most frequent pollinator in both populations. Outcrossing was dominant in the breeding system and insect pollination played an important role in outcrossing. Our study suggested that proper management (artificial selection) could promote pollination success of M. sativa.

5.
BMC Ecol ; 18(1): 28, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157830

RESUMO

BACKGROUND: A large proportion of the flowers and ovules of plants do not develop into fruits and seeds. Plant reproduction may be limited because of pollen limitation and resource limitation. Medicago sativa L. is an ecologically important species in northwest China. We conducted a pollen supplementation experiment to determine the degree of pollen limitation in this species and detect the possible effects of resource allocation on pollen supplementation. We crossed two factors, pollen level (natural condition and hand pollinated) and resource level (control, water added, and fertilizer added), to estimate the effects of pollen addition and resource limitation on the opening of flowers and seed set. We also analyzed the floral characters, visitation frequency of pollinators and pollinator activity to estimate the effect of pollinators on the reproduction of M. sativa. RESULTS: Our results indicated that addition of pollen to some flowers did not divert resources from other flowers and that the addition of pollen boosted the seed set per flower, with no effect on flower number. The primary effect of resource limitation was on the number of flowers produced; however, there was no significant effect on seed set per flower. These findings showed that pollen limitation was an important limiting factor for seed set. In addition, Andrena lebedevi Popov was identified as the most effective pollinator, and pollinator visiting and activity affected reproduction success in M. sativa. CONCLUSIONS: We found outcrossing was dominant in the breeding system and insect pollination played an important role in outcrossing. These findings have identified the dominant factor influencing seed set of M. sativa. This study aspires to contribute to a better understanding of pollen limitation, resource limitation and reproductive success.


Assuntos
Medicago sativa/fisiologia , Pólen/fisiologia , Polinização , China , Reprodução
6.
Environ Monit Assess ; 189(4): 149, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28275986

RESUMO

Plants that grow in dune ecosystems always suffer from sand burial. Shrubs play implications on the healthy functioning of dune ecosystems due to control blowing sand. However, the survival and growth responses of shrubs to sand burial remain poorly understood. The survival rate and seedling height of two shrubs (Artemisia halodendron and Lespedeza davurica) along with the soil properties under different burial depths were examined in order to reveal the causing ecophysiological attributes of sand burial on shrubs in the desertified region. It was found that A. halodendron can survive a burial depth of 6 cm greater than its seedling height, which is a dominant shrub in mobile dunes with intense burial, whereas a burial depth equivalent to three fourths of its seedling height is detrimental to L. davurica, which is dominant in fixed dunes with less burial. The reasons for the shrub death under sand burial were associated with the physical barrier to vertical growth and the reduction in photosynthetic area. In conclusion, A. halodendron can facilitate the stabilization of mobile dunes because of their high tolerance to the frequent and intensive sand burial, while L. davurica can be beneficial for the recovery process because of their higher survival rates under shallow burial following restoration of mobile dunes.


Assuntos
Artemisia/fisiologia , Ecossistema , Monitoramento Ambiental , Lespedeza/fisiologia , Plântula/fisiologia , China , Fotossíntese , Plântula/crescimento & desenvolvimento , Dióxido de Silício , Solo
7.
J Plant Res ; 129(3): 435-47, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26780064

RESUMO

Ammopiptanthus mongolicus is an ecologically important species in the arid region of Northwest China. Habitat disturbance can significantly affect plant mating success and ultimately species viability. Pollen limitation of plant reproduction occurs in many plant species, particularly those under habitat disturbance. However, previous investigations have demonstrated differences in pollen limitation between conserved and disturbed sites. We compared the phenology, pollen limitation, pollinators and breeding system of both sites to determine whether habitat disturbance has generated changes in these plant components. We found that the species differed in four aspects. First, blooming duration and flowering peak were longer in the disturbed site than in the conserved site. Second, A. mongolicus can be pollen-limited and pollen limitation was more intense in the conserved site than in the disturbed site. Third, Anthophora uljanini was found to be a frequent pollinator in the conserved site, while Apis mellifera was the most effective and frequent flower visitor. More pollinator visits were recorded in the disturbed site, which could explain the differences in reproductive success. Finally, seed set was higher in the disturbed site than in the conserved site. We found that outcrossing was dominant in both sites and that agamospermy and self-pollination played complementary roles to ensure reproduction. Differences in flower production influenced by artificial selection and pollinator type explain the different seed set in both sites, whereas habitat disturbance cause changes differences in the pollination process and limits pollen flow. The balance between artificial management and mating success is crucial to analysis of the pollination process and manipulation of A. mongolicus population size.


Assuntos
Clima Desértico , Ecossistema , Fabaceae/fisiologia , Polinização/fisiologia , Cruzamento , China , Flores/fisiologia , Geografia , Pólen/fisiologia , Reprodução , Fatores de Tempo
8.
Environ Monit Assess ; 188(1): 21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26661957

RESUMO

Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.


Assuntos
Monitoramento Ambiental , Pradaria , Solo/química , Biomassa , China , Clima Desértico , Ecologia , Ecossistema , Poaceae
9.
Ying Yong Sheng Tai Xue Bao ; 20(7): 1559-64, 2009 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-19899451

RESUMO

Analyses of the changes in desertified land area, water resource availability, land use, and plant productivity in Horqin Sandy Land in recent 50 years showed that from 1950 to the late 1980s, the land desertification in Horqin Sandy Land had a rapid expansion, but reversed since then. The annual runoff of Xiliaohe River decreased consistently, and in 1999, the middle reach at Tongliao section was dried up. In recent 20 years, the water table of Xihu Lake was decreased by about 10 m, and dried up in 2001. The above-ground biomass of grasslands decreased from 520 g x m(-2) in 1937 to 197 g x m(-2) in 2005. The main cause of these results was the change of land use pattern, i. e., the overuse of water resources for re-vegetation or cropland irrigation. Water resources reduction was the major challenge to the desertification reversion in Horqin Sandy Land.


Assuntos
Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Poaceae/crescimento & desenvolvimento , Água/análise , China , Clima Desértico , Poaceae/metabolismo , Rios , Dióxido de Silício/química , Solo/análise
10.
Huan Jing Ke Xue ; 30(8): 2387-93, 2009 Aug 15.
Artigo em Chinês | MEDLINE | ID: mdl-19799306

RESUMO

Based on the field investigation and lab analysis, we used geostatistics method to examine the spatial heterogeneity of soil organic carbon and total nitrogen in a 0-year fenced mobile dune (MD11), an 11-year fenced mobile dune (MD11) and a 20-year fenced mobile dune (MD20) in Horqin Sandy Land. The results showed that the average values of vegetation cover, species number and diversity, soil organic carbon and total nitrogen (0-20 cm) contents increased with the increase in fenced age of mobile dunes. Geostatistical analysis showed that the proportions of relative structural variance C/(C0 + C) of soil organic carbon and total nitrogen in each dune were over 65% , which suggested that they had obvious spatial autocorrelation. Calculated ranges of spatial autocorrelation for soil organic carbon and total nitrogen were 58.39 m and 91.00 m (MDO), 28.59 m and 23.61 m (MD11) and 63.31 m and 61.05 m (MD20), respectively. The analysis from semivariance calculated parameters and spatial distributed maps showed that the spatial heterogeneity of soil organic carbon and total nitrogen firstly increased from MDO to MD11 then decreased from MD11 to MD20. Correlation analysis indicated that there were significantly positive correlations among vegetation cover, species richness and diversity index, soil organic carbon and total nitrogen (p < 0.01) . The analyzed results indicate that the spatial distributions of soil organic carbon and total nitrogen are most strongly related the topography features and vegetation changes in sand dune ecosystems prone to wind erosion. The accumulation and spatial haterogeniety of soil organic carbon and total nitrogen in the restoration of dune degraded vegetation are greatly affected by vegetation restoration succession.


Assuntos
Carbono/análise , Conservação dos Recursos Naturais , Nitrogênio/análise , Compostos Orgânicos/análise , Solo/análise , China , Clima Desértico , Ecologia , Poaceae/crescimento & desenvolvimento , Dióxido de Silício
11.
Huan Jing Ke Xue ; 29(4): 1027-34, 2008 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-18637357

RESUMO

Soil crust is a common and widespread phenomenon in desert areas all over the world due to its extraordinary ability to survive desiccation and extreme temperatures, high pH and salinity. Despite its unassuming appearance, biological soil crusts play a significant role in desert ecosystems, including involvement in the process of formation, stability and fertility of soil, preventing soil erosion by water or wind, increasing the possibility of vascular plant colonization, and being responsible for the stabilization of sand dunes. This study taking Horqin Sand Land as research region, by field sampling, crust and topsoil (0-2.5 cm and 2.5-5 cm under crust) samples in different dune habitats and shrub communities were collected, and their physicochemical properties were analyzed, including particle size distribution, bulk density, total nutrients and available nutrients, pH, EC and CaCO3 content. The result revealed that Artemisia halodendron in semi-mobile dune, Caragana microphylla in semi-fix dune, Artemisia frigida in fix dune and Salix microstachya in interdunal lowland were respectively developed physical soil crust, algae crust, lichen crust and moss crust. Crust thickness, hardness, water content, fine fraction, total and available nutrients gradually increased by semi-mobile dune < semi-fix dune < fix dune < interdunal lowland in terms of different dune habitats, and by physical soil crust < algae crust < lichen crust < moss crust in terms of different crust types. There were significant differences among crust types on nutrient content and particle size distribution (p < 0.01). Meanwhile, crust enhanced the < 0.05 mm content and nutrient content of topsoil, following an increasing trend from semi-mobile dune to interdunal lowland. As to each crust, the parameters of 0-2.5 cm subsurface soil layer were higher than that in 2.5-5 cm soil layer. The result also showed that the fine fraction and nutrient content of moss crust under Salix microstachya in interdunal lowland were higher than others, so did the 0-5 cm subsurface soil under it.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Dióxido de Silício/análise , Solo/análise , Artemisia/crescimento & desenvolvimento , Caragana/crescimento & desenvolvimento , China , Conservação dos Recursos Naturais , Clima Desértico , Salix/crescimento & desenvolvimento , Água/análise
12.
Huan Jing Ke Xue ; 28(5): 945-51, 2007 May.
Artigo em Chinês | MEDLINE | ID: mdl-17633159

RESUMO

This study provided the analysis of changes of species diversity and productivity in relation to soil properties in six typical habitats (wet meadow, dry grassland, fixed dune, semi-fixed dune, semi- shifted dune, and shifted dune) in Horqin Sand Land. The changes of vegetation and soil properties, following the degraded process of sandy grassland, show the following trends: (1) productivity decreases gradually, (2) species diversity changes in a pattern of near-formal distribution, firstly increases from wet meadow, dry grassland, to fixed dune (at the peak), and then decreases from semi-fixed dune, semi-shifted dune, to shifted dune, while (3) contents of soil fine sand, silt, soil organic carbon, total nitrogen, and electrical conductivity, decrease consistently. Ordination technique of canonical correspondence analysis (CCA) was used to examine the relationship between the vegetation pattern and soil parameters. Results show that soil organic carbon, total nitrogen, available nitrogen, available potassium, soil water content, pH and electrical conductivity are main factors of vegetation pattern in this area. These factors are closely related to the first two canonical axes, accounting for 40% of the species-soil properties relationship, and soil nutrient is the key factor for determining the distributions of the major vegetation type and pattern. Furthermore, the correlation between species diversity or ecological dominance of the communities and gradient of soil factors is significant, shows that changes of species diversity and productivity are affected by soil nutrients, soil water content, pH and electrical conductivity. The regression model of productivity and soil property reveals that soil nutrient is the key factor to community productivity, accounting for 86.73% of the relationship between productivity-soil properties.


Assuntos
Biodiversidade , Poaceae/crescimento & desenvolvimento , Dióxido de Silício/análise , Solo/análise , Árvores/crescimento & desenvolvimento , Biomassa , China , Poaceae/classificação , Árvores/classificação
13.
Huan Jing Ke Xue ; 27(4): 635-40, 2006 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-16767978

RESUMO

Organic carbon and nitrogen storages in plant-soil system were measured at different desertification stages (potential, light, moderate, severe, and most-severe) in Horqin sandy land. From potential desertification to light, moderate, severe, and most-severe desertification, total biomass (aboveground and belowground) carbon storages decrease by 26.4%, 51.0%, 79.0%, and 91.0%, respectively, while total biomass nitrogen storages decrease by 33.6%, 66.9%, 87.4%, and 93.2%, soil organic carbon storages by 52.2%, 75.9%, 87.0% , and 90.1%, and soil nitrogen storages by 43.5%, 71.0%, 81.3%, and 82.7%, respectively. The carbon and nitrogen storages in plant-soil system are in the order: potential (C: 5 266 g x m(-2) and N: 534 g m(-2)) >light (C: 2619 g x m(-2) and N: 303 g x m(-2)) >moderate (C: 1368 g x m(-2) and N: 156 g x m(-2)) >severe (C: 715 g x m(-2) and N: 99 g x m(-2))>most severe (C: 517 g x x m(-2) and N: 91 g x m(-2)). The biomass carbon and nitrogen storages decline more rapidly at later desertification stage (from severe to most-severe) than initial stage (from potential to light), while soil carbon and nitrogen decline more rapidly at initial stage. There is a greater proportional decline in soil carbon than in nitrogen during desertification process. The biomass nitrogen storages decline more rapidly than carbon at initial stage, however, the case is reverse at later stage.


Assuntos
Carbono/análise , Conservação dos Recursos Naturais , Nitrogênio/análise , Plantas/química , Solo/análise , Biomassa , China , Ecossistema , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...