Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1013, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38307850

RESUMO

Through pumping a spin current from ferromagnet into heavy metal (HM) via magnetization precession, parts of the injected spins are in-plane rotated by the lattice vibration, namely acoustic spin rotation (ASR), which manifests itself as an inverse spin Hall voltage in HM with an additional 90° difference in angular dependency. When reversing the stacking order of bilayer with a counter-propagating spin current or using HMs with an opposite spin Hall angle, such ASR voltage shows the same sign, strongly suggesting that ASR changes the rotation direction due to interface spin-orbit interaction. With the drift-diffusion model of spin transport, we quantify the efficiency of ASR up to 30%. The finding of ASR endows the acoustic device with an ability to manipulate spin, and further reveals a new spin-orbit coupling between spin current and lattice vibration.

2.
ACS Appl Mater Interfaces ; 11(42): 39369-39375, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31603641

RESUMO

Current-induced spin-orbit torques (SOTs) enable efficient electrical manipulation of the magnetization in heterostructures with a perpendicular magnetic anisotropy through the Rashba effect or spin-Hall effect. However, in conventional SOT-based heterostructures, an in-plane bias magnetic field along the current direction is required for the deterministic switching. Here, we report that the field-free SOT switching can be achieved by introducing a wedged oxide interface between a heavy metal and a ferromagnet. The results demonstrate that the field-free SOT switching is determined by a current-induced perpendicular effective field (Hzeff) originating from the interfacial Rashba effect due to the lateral structural symmetry-breaking introduced by the wedged oxide layer. Furthermore, we show that the sign and magnitude of Hzeff exhibit a significant dependence on the interfacial oxygen content, which can be controlled by the inserted oxide thickness. Our findings provide a deeper insight into the field-free SOT switching by the interfacial Rashba effect.

3.
Nanoscale Res Lett ; 13(1): 238, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30112694

RESUMO

The influence of C insertion on Dzyaloshinskii-Moriya interaction (DMI) as well as current-induced domain wall (DW) motion (CIDWM) and tilting in Pt/Co/Ta racetracks is investigated via a magneto-optical Kerr microscope. The similar DMI strength for Pt/Co/Ta and Pt/Co/C/Ta samples reveals that DMI mainly comes from the Pt/Co interface. Fast DW velocity around tens of m/s with current density around several MA/cm2 is observed in Pt/Co/Ta. However, it needs double times larger current density to reach the same magnitude in Pt/Co/C/Ta, indicating DW velocity is related to the spin-orbit torque efficiency and pinning potential barrier. Moreover, in CIDWM, DW velocity is around 103 times larger than that in field-induced DW motion (FIDWM) with current-generated effective field keeping the same magnitude as applied magnetic field, revealing that the current-generated Joule heating has an influence on DW motion. Interestingly, current-induced DW tilting phenomenon is observed, while this phenomenon is absent in FIDWM, demonstrating that the current-generated Oersted field may also play an essential role in DW tilting. These findings could provide some designing prospects to drive DW motion in SOT-based racetrack memories.

4.
Sci Rep ; 8(1): 12959, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154491

RESUMO

Current-induced magnetization reversal via spin-orbit torques (SOTs) has been intensively studied in heavy-metal/ferromagnetic-metal/oxide heterostructures due to its promising application in low-energy consumption logic and memory devices. Here, we systematically study the function of Joule heating and SOTs in the current-induced magnetization reversal using Pt/Co/SmOx and Pt/Co/AlOx structures with different perpendicular magnetic anisotropies (PMAs). The SOT-induced effective fields, anisotropy field, switching field and switching current density (Jc) are characterized using electric transport measurements based on the anomalous Hall effect and polar magneto-optical Kerr effect (MOKE). The results show that the current-generated Joule heating plays an assisted role in the reversal process by reducing switching field and enhancing SOT efficiency. The out-of-plane component of the damping-like-SOT effective field is responsible for the magnetization reversal. The obtained Jc for Pt/Co/SmOx and Pt/Co/AlOx structures with similar spin Hall angles and different PMAs remains roughly constant, revealing that the coherent switching model cannot fully explain the current-induced magnetization reversal. In contrast, by observing the domain wall nucleation and expansion using MOKE and comparing the damping-like-SOT effective field and switching field, we conclude that the current-induced magnetization reversal is dominated by the depinning model and Jc also immensely relies on the depinning field.

5.
Phys Chem Chem Phys ; 20(15): 9904-9909, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29619448

RESUMO

Heavy metal/ferromagnetic layers with perpendicular magnetic anisotropy (PMA) have potential applications for high-density information storage in racetrack memories and nonvolatile magnetic random access memories. In these devices, deterministic magnetization switching has been achieved via electric current induced spin orbital torques (SOTs) with the assistance of a current directional external in-plane bias field, which causes technological obstacles for the real application of SOT based spintronic devices. Here, we report that reversible field-free magnetization switching could be achieved via current-driven domain wall motion (DWM) in Pt/Co/Cr micro-sized racetracks with PMA owing to the preformation of the homochiral Néel-type domain wall, in which an in-plane inherent Dzyaloshinskii-Moriya interaction field was generated acting as the external in-plane bias field to break the symmetry. A full magnetization switching can be realized in this device based on the enhanced SOTs from a dedicated design of Pt/Co/Cr structures with Pt and Cr showing opposite signs of spin Hall angles. Therefore, the generated spin currents are expected to work in concert to improve the SOTs. We also demonstrated that the simultaneously accompanying Joule heating effect also plays a key role in the field-free magnetization switching process, including the propagation field as well as the domain wall motion velocity.

6.
Nanomicro Lett ; 6(4): 365-371, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-30464948

RESUMO

The CrO2 micro rod powder was synthesized by decomposing the CrO3 flakes at a specific temperature to yield precursor and annealing such a precursor in a sealed glass tube. The magneto-transport properties have been measured by a direct current four-probe method using a Cu/CrO2 rods/colloidal silver liquid electrode sandwich device. The largest magnetoresistance (MR) around ~72 % was observed at 77 K with applied current of 0.05 µA. The non-linear I-V curve indicates a tunneling type transport properties and the tunneling barrier height is around 2.2 ± 0.04 eV at 77 K, which is obtained with fitting the non-linear I-V curves using Simmons' equation. A mixing of Cr oxides on the surface of CrO2 rod observed by X-ray photoemission spectroscopy provides a tunneling barrier rather than a single phase of Cr2O3 insulating barrier. The MR shows strong bias voltage dependence and is ascribed to the two-step tunneling process.

7.
Nanotechnology ; 22(4): 045707, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21169659

RESUMO

CoFe(2)O(4) nanoparticles were fabricated by a sol-gel method and then were coated with Co(3)Fe(7)-Co by means of a simple reduction process at different temperatures under 2% H(2) with the protection of argon to generate the dielectric-core/metallic-shell structure. The optimum reflection loss (RL) calculated from permittivity and permeability of the 80 wt% CoFe(2)O(4)/Co(3)Fe(7)-Co and 20 wt% epoxy resin composites reached - 34.4 dB, which was much lower than that of unreduced CoFe(2)O(4) and epoxy resin composites, at 2.4 GHz with a matching thickness of 4.0 mm. Moreover the RL exceeding - 10 dB in the maximum frequency range of 2.2-16 GHz was achieved for a thickness of composites of 1.0-4.5 mm with 600 °C thermal reduction process. The improved microwave absorption properties are a consequence of a proper electromagnetic match and the enhanced magnetic loss besides its dielectric loss due to the existence of the core/shell structure in CoFe(2)O(4) composites. Thus, the reductive CoFe(2)O(4) nanoparticles have great potential for being a highly efficient microwave absorber.

8.
J Nanosci Nanotechnol ; 10(8): 4936-42, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21125831

RESUMO

Room temperature ferromagnetism has been observed in SnO2 nanowires synthesized by a chemical vapor deposition using Au layers as catalyst. The nanowires are homogeneous and single-crystalline grown along the [101] direction, with diameters ranging from 25 to 100 nm and length greater than 20 microm. The special magnetization reaches 0.114 emu/g for the nanowires with diameter of approximately 25 nm and reduces with increasing diameters. Branched SnO2 nanowires were prepared via a two-step vapor-liquid-solid approach, and an enhanced magnetization was obtained. To the contrary, the nanowires annealed at 1300 degrees C in air were completely transformed into the particles and exhibit weakened magnetization. These results demonstrate that the ferromagnetic properties of the samples depend on the surface-to-volume ratio of nanowires. With a combined study of photoluminescence, our results reveal that the oxygen vacancies at the surface of nanowires contribute to the ferromagnetism of SnO2 nanowires. This argument is further confirmed by a sequential annealing in a rich-oxygen atmosphere, then in a low vacuum condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...