Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ther Adv Respir Dis ; 18: 17534666241253694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803144

RESUMO

BACKGROUND: Given the rarity of tracheobronchopathia osteochondroplastica (TO), many young doctors in primary hospitals are unable to identify TO based on bronchoscopy findings. OBJECTIVES: To build an artificial intelligence (AI) model for differentiating TO from other multinodular airway diseases by using bronchoscopic images. DESIGN: We designed the study by comparing the imaging data of patients undergoing bronchoscopy from January 2010 to October 2022 by using EfficientNet. Bronchoscopic images of 21 patients with TO at Anhui Chest Hospital from October 2019 to October 2022 were collected for external validation. METHODS: Bronchoscopic images of patients with multinodular airway lesions (including TO, amyloidosis, tumors, and inflammation) and without airway lesions in the First Affiliated Hospital of Guangzhou Medical University were collected. The images were randomized (4:1) into training and validation groups based on different diseases and utilized for deep learning by convolutional neural networks (CNNs). RESULTS: We enrolled 201 patients with multinodular airway disease (38, 15, 75, and 73 patients with TO, amyloidosis, tumors, and inflammation, respectively) and 213 without any airway lesions. To find multinodular lesion images for deep learning, we utilized 2183 bronchoscopic images of multinodular lesions (including TO, amyloidosis, tumor, and inflammation) and compared them with images without any airway lesions (1733). The accuracy of multinodular lesion identification was 98.9%. Further, the accuracy of TO detection based on the bronchoscopic images of multinodular lesions was 89.2%. Regarding external validation (using images from 21 patients with TO), all patients could be diagnosed with TO; the accuracy was 89.8%. CONCLUSION: We built an AI model that could differentiate TO from other multinodular airway diseases (mainly amyloidosis, tumors, and inflammation) by using bronchoscopic images. The model could help young physicians identify this rare airway disease.


Assuntos
Broncoscopia , Osteocondrodisplasias , Valor Preditivo dos Testes , Doenças da Traqueia , Humanos , Doenças da Traqueia/diagnóstico por imagem , Doenças da Traqueia/patologia , Doenças da Traqueia/diagnóstico , Pessoa de Meia-Idade , Masculino , Feminino , Adulto , Diagnóstico Diferencial , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/patologia , Reprodutibilidade dos Testes , Aprendizado Profundo , Idoso , China , Interpretação de Imagem Assistida por Computador , Redes Neurais de Computação , Inteligência Artificial
2.
Ther Adv Chronic Dis ; 14: 20406223231181495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637372

RESUMO

Background: Artificial intelligence (AI) technology has been used for finding lesions via gastrointestinal endoscopy. However, there were few AI-associated studies that discuss bronchoscopy. Objectives: To use convolutional neural network (CNN) to recognize the observed anatomical positions of the airway under bronchoscopy. Design: We designed the study by comparing the imaging data of patients undergoing bronchoscopy from March 2022 to October 2022 by using EfficientNet (one of the CNNs) and U-Net. Methods: Based on the inclusion and exclusion criteria, 1527 clear images of normal anatomical positions of the airways from 200 patients were used for training, and 475 clear images from 72 patients were utilized for validation. Further, 20 bronchoscopic videos of examination procedures in another 20 patients with normal airway structures were used to extract the bronchoscopic images of normal anatomical positions to evaluate the accuracy for the model. Finally, 21 respiratory doctors were enrolled for the test of recognizing corrected anatomical positions using the validating datasets. Results: In all, 1527 bronchoscopic images of 200 patients with nine anatomical positions of the airway, including carina, right main bronchus, right upper lobe bronchus, right intermediate bronchus, right middle lobe bronchus, right lower lobe bronchus, left main bronchus, left upper lobe bronchus, and left lower lobe bronchus, were used for supervised machine learning and training, and 475 clear bronchoscopic images of 72 patients were used for validation. The mean accuracy of recognizing these 9 positions was 91% (carina: 98%, right main bronchus: 98%, right intermediate bronchus: 90%, right upper lobe bronchus: 91%, right middle lobe bronchus 92%, right lower lobe bronchus: 83%, left main bronchus: 89%, left upper bronchus: 91%, left lower bronchus: 76%). The area under the curves for these nine positions were >0.98. In addition, the accuracy of extracting the images via the video by the trained model was 94.7%. We also conducted a deep learning study to segment 10 segment bronchi in right lung, and 8 segment bronchi in Left lung. Because of the problem of radial depth, only segment bronchi distributions below right upper bronchus and right middle bronchus could be correctly recognized. The accuracy of recognizing was 84.33 ± 7.52% by doctors receiving interventional pulmonology education in our hospital over 6 months. Conclusion: Our study proved that AI technology can be used to distinguish the normal anatomical positions of the airway, and the model we trained could extract the corrected images via the video to help standardize data collection and control quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...