Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374549

RESUMO

This study presents a comprehensive analysis of different coating materials on the POM substrate. Specifically, it investigated physical vapour deposition (PVD) coatings of aluminium (Al), chromium (Cr), and chromium nitride (CrN) of three various thicknesses. The deposition of Al was accomplished through a three-step process, particularly plasma activation, metallisation of Al by magnetron sputtering, and plasma polymerisation. The deposition of Cr was attained using the magnetron sputtering technique in a single step. For the deposition of CrN, a two-step process was employed. The first step involved the metallisation of Cr using magnetron sputtering, while the second step involved the vapour deposition of CrN, obtained through the reactive metallisation of Cr and nitrogen using magnetron sputtering. The focus of the research was to conduct comprehensive indentation tests to obtain the surface hardness of the analysed multilayer coatings, SEM analyses to examine surface morphology, and thorough adhesion analyses between the POM substrate and the appropriate PVD coating.

2.
Materials (Basel) ; 16(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37109786

RESUMO

The aluminium alloy AA 6086 attains the highest room temperature strength among Al-Mg-Si alloys. This work studies the effect of Sc and Y on the formation of dispersoids in this alloy, especially L12-type ones, which can increase its high-temperature strength. A comprehensive investigation was carried out using light microscopy (LM), scanning (SEM), and transmission (TEM) electron microscopy, energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dilatometry to obtain the information regarding the mechanisms and kinetics of dispersoid formation, particularly during isothermal treatments. Sc and Y caused the formation of L12 dispersoids during heating to homogenization temperature and homogenization of the alloys, and during isothermal heat treatments of the as-cast alloys (T5 temper). The highest hardness of Sc and (Sc + Y) modified alloys was attained by heat-treating alloys in the as-cast state in the temperature range between 350 °C and 450 °C (via T5 temper).

3.
Materials (Basel) ; 16(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048978

RESUMO

This study presents a comprehensive experimental investigation of the high-cycle fatigue (HCF) behaviour of the ductile aluminium alloy AA 5083-H111. The analysed specimens were fabricated in the rolling direction (RD) and transverse direction (TD). The HCF tests were performed in a load control (load ratio R = 0.1) at different loading levels under the loading frequency of 66 Hz up to the final failure of the specimen. The experimental results have shown that the S-N curves of the analysed Al-alloy consist of two linear curves with different slopes. Furthermore, RD-specimens demonstrated longer fatigue life if compared to TD-specimens. This difference was about 25% at the amplitude stress 65 MPa, where the average fatigue lives 276,551 cycles for RD-specimens, and 206,727 cycles for TD-specimens were obtained. Similar behaviour was also found for the lower amplitude stresses and fatigue lives between 106 and 108 cycles. The difference can be caused by large Al6(Mn,Fe) particles which are elongated in the rolling direction and cause higher stress concentrations in the case of TD-specimens. The micrography of the fractured surfaces has shown that the fracture characteristics were typical for the ductile materials and were similar for both specimen orientations.

4.
Polymers (Basel) ; 14(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36365742

RESUMO

A comprehensive experimental investigation of the wear behaviour of coated spur polymer gears made of POM is performed in this study. Three different thicknesses of aluminium (Al) coatings were investigated and deposited by the Physical Vapour Deposition (PVD) process. The Al coating was deposited in three steps: By plasma activation, metallisation of the aluminium by the magnetron sputtering process, and plasma polymerisation. The wear of the gears was tested on an in-house developed testing rig for different torques (16, 20, and 24 Nm) and a rotational speed of 1000 rpm. The duration of the experiments was set to 13 h, when the tooth thickness and, consequently, the wear of the tooth flank were recorded. The experimental results showed that the influence of metallisation with aluminium surface coatings on the wear behaviour of the analysed polymer gear is not significantly important. The results also showed that the gears with a thicker aluminium coating showed greater wear than gears with a thinner coating or even without a coating. This is probably due to the fact that the aluminium particles that started to deviate during gear operation represented the abrasive material, which led to the faster wear of the contacting surfaces of the meshing gear flanks.

5.
Polymers (Basel) ; 13(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34685347

RESUMO

A comprehensive experimental investigation of the wear behaviour of coated spur polymer gears made of POM is performed in this study. The three physical vapour deposition (PVD) coatings investigated were aluminium (Al), chromium (Cr), and chromium nitrite (CrN). Al was deposited in three process steps: By plasma activation, metallisation of Al by the magnetron sputtering process, and by plasma polymerisation. Cr deposition was performed in only one step, namely, the metallization of Cr by the magnetron sputtering process. The deposition of CrN was carried out in two steps: the first involved the metallization of Cr by the magnetron sputtering process while the second step, vapour deposition, involved the reactive metallisation of Cr with nitrogen, also by the magnetron sputtering process. The gears were tested on an in-house developed testing rig for different torques (16, 20, 24 and 30 Nm) and rotational speed of 1000 rpm. The duration of the experiments was set to 13 h, when the tooth thickness, and, consequently, the wear of the tooth flank was recorded. The experimental results showed that the influence of metallisation with aluminium, chromium, and chromium nitrite surface coatings on the wear behaviour of the analysed polymer gear is not significant. This is probably due to the fact that the analysed coatings were, in all cases, very thin (less than 500 nm), and therefore did not influence the wear resistance significantly. In that respect, an additional testing using thicker coatings should be applied in the further research work.

6.
Microsc Microanal ; 19(5): 1308-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23773577

RESUMO

This work studied the phases in the Al corner of the Al-Mn-Be phase diagram in the as-cast state and heat-treated conditions. Metallographic investigations, X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy were used for identifying the phases. The Be contents in the identified phases were precisely determined using Auger electron spectroscopy. The results indicated that Al6Mn does not dissolve Be, whilst λ-Al4Mn dissolves up to 7 at.% Be. The average composition of the T phase, which is normally designated as Al15Mn3Be2, was 72 at.% Al, 19 at.% Mn, and 9 at.% Be. The phase with the nominal composition Be4AlMn contained more Al than Mn. The atomic ratio Al:Mn was between 1.3:1 and 2:1. The hexagonal Be-rich phase did not dissolve any Al and Mn. The icosahedral quasicrystalline (IQC) phase contained up to 45 at.% Be. The compositions of T phase, λ-Al4Mn, IQC, and Be4AlMn may vary, however, the ratio (Al + Be):Mn remained constant, and was close either to four or six indicating substitution of Al atoms with Be atoms in these phases.

7.
J Air Waste Manag Assoc ; 62(5): 500-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22696800

RESUMO

UNLABELLED: This work investigated the possibilities of immobilizing incineration fly ash by applying different processing methods. Direct sintering of fly ash at 1050 degrees C produced material with increased resistance to leaching; however, the high content of halides prevented the achievement of appropriate strength. Fly ash melting and casting into metallic moulds resulted in the formation of glass with good chemical resistivity and mechanical properties, which were further improved by devitrification, and the formation of glass-ceramics. The most successful combination of strength and resistance to leaching was obtained by a process consisting of fly ash melting, by pouring the melt into water, then grinding, and sintering without additives at 850-950 degrees C. In this way, a material was produced that cannot only be landfilled as a stabilised and non-reactive waste in landfills for non-hazardous wastes, but can also be utilized as a valuable material for manufacturing useful products. This article provided valuable results for policy-makers in Slovenia, about the handling fly ash from incineration plants. IMPLICATIONS: Fly ash from an incineration plant was thermally treated using several processing routes. Ash-melting, by pouring the melt into water and sintering, produced glass-ceramics having an optimal combination of strength and resistance to leaching that can find applications as useful products. These results provide important data for policy makers in Slovenia regarding the building of incineration plants, and handling the solid-waste products, especially fly ash.


Assuntos
Cinza de Carvão/análise , Cinza de Carvão/química , Eliminação de Resíduos/métodos , Cerâmica/análise , Cerâmica/química , Técnicas de Química Analítica , Vidro/análise , Vidro/química , Microscopia Eletrônica de Varredura , Eslovênia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...