Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 20(2)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658467

RESUMO

Heat Shock Factor A2 (HsfA2) is part of the Heat Shock Factor (HSF) network, and plays an essential role beyond heat shock in environmental stress responses and cellular homeostatic control. Arabidopsis thaliana cell cultures derived from wild type (WT) ecotype Col-0 and a knockout line deficient in the gene encoding HSFA2 (HSFA2 KO) were grown aboard the International Space Station (ISS) to ascertain whether the HSF network functions in the adaptation to the novel environment of spaceflight. Microarray gene expression data were analyzed using a two-part comparative approach. First, genes differentially expressed between the two environments (spaceflight to ground) were identified within the same genotype, which represented physiological adaptation to spaceflight. Second, gene expression profiles were compared between the two genotypes (HSFA2 KO to WT) within the same environment, which defined genes uniquely required by each genotype on the ground and in spaceflight-adapted states. Results showed that the endoplasmic reticulum (ER) stress and unfolded protein response (UPR) define the HSFA2 KO cells' physiological state irrespective of the environment, and likely resulted from a deficiency in the chaperone-mediated protein folding machinery in the mutant. Results further suggested that additional to its universal stress response role, HsfA2 also has specific roles in the physiological adaptation to spaceflight through cell wall remodeling, signal perception and transduction, and starch biosynthesis. Disabling HsfA2 altered the physiological state of the cells, and impacted the mechanisms induced to adapt to spaceflight, and identified HsfA2-dependent genes that are important to the adaption of wild type cells to spaceflight. Collectively these data indicate a non-thermal role for the HSF network in spaceflight adaptation.


Assuntos
Adaptação Biológica/genética , Diferenciação Celular , Fatores de Transcrição de Choque Térmico/genética , Células Vegetais/metabolismo , Células Vegetais/efeitos da radiação , Voo Espacial , Diferenciação Celular/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genótipo , Fatores de Transcrição de Choque Térmico/metabolismo , Modelos Biológicos , Ausência de Peso
3.
Astrobiology ; 17(11): 1077-1111, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29088549

RESUMO

Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight. Key Words: ARG1-Spaceflight-Gene expression-Physiological adaptation-BRIC. Astrobiology 17, 1077-1111.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Voo Espacial , Arabidopsis/citologia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Plantas Geneticamente Modificadas , Plântula/fisiologia , Ausência de Peso/efeitos adversos
4.
PLoS One ; 12(6): e0180186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662188

RESUMO

Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response than Col-0, suggesting that the in-space light environment affects physiological adaptation, which implies that manipulating the local habitat can also substantially impact the metabolic cost of spaceflight adaptation.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Voo Espacial , Transcriptoma , Genes de Plantas , Germinação
5.
Front Plant Sci ; 8: 528, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443120

RESUMO

Controlled hypobaria presents biology with an environment that is never encountered in terrestrial ecology, yet the apparent components of hypobaria are stresses typical of terrestrial ecosystems. High altitude, for example, presents terrestrial hypobaria always with hypoxia as a component stress, since the relative partial pressure of O2 is constant in the atmosphere. Laboratory-controlled hypobaria, however, allows the dissection of pressure effects away from the effects typically associated with altitude, in particular hypoxia, as the partial pressure of O2 can be varied. In this study, whole transcriptomes of plants grown in ambient (97 kPa/pO2 = 21 kPa) atmospheric conditions were compared to those of plants transferred to five different atmospheres of varying pressure and oxygen composition for 24 h: 50 kPa/pO2 = 10 kPa, 25 kPa/pO2 = 5 kPa, 50 kPa/pO2 = 21 kPa, 25 kPa/pO2 = 21 kPa, or 97 kPa/pO2 = 5 kPa. The plants exposed to these environments were 10 day old Arabidopsis seedlings grown vertically on hydrated nutrient plates. In addition, 5 day old plants were also exposed for 24 h to the 50 kPa and ambient environments to evaluate age-dependent responses. The gene expression profiles from roots and shoots showed that the hypobaric response contained more complex gene regulation than simple hypoxia, and that adding back oxygen to normoxic conditions did not completely alleviate gene expression changes in hypobaric responses.

6.
BMC Plant Biol ; 17(1): 31, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143395

RESUMO

BACKGROUND: Skewing root patterns provide key insights into root growth strategies and mechanisms that produce root architectures. Roots exhibit skewing and waving when grown on a tilted, impenetrable surface. The genetics guiding these morphologies have been examined, revealing that some Arabidopsis ecotypes skew and wave (e.g. WS), while others skew insignificantly but still wave (e.g. Col-0). The underlying molecular mechanisms of skewing and waving remain unclear. In this study, transcriptome data were derived from two Arabidopsis ecotypes, WS and Col-0, under three tilted growth conditions in order to identify candidate genes involved in skewing. RESULTS: This work identifies a number of genes that are likely involved in skewing, using growth conditions that differentially affect skewing and waving. Comparing the gene expression profiles of WS and Col-0 in different tilted growth conditions identified 11 candidate genes as potentially involved in the control of skewing. These 11 genes are involved in several different cellular processes, including sugar transport, salt signaling, cell wall organization, and hormone signaling. CONCLUSIONS: This study identified 11 genes whose change in expression level is associated with root skewing behavior. These genes are involved in signaling and perception, rather than the physical restructuring of root. Future work is needed to elucidate the potential role of these candidate genes during root skewing.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ecótipo , Perfilação da Expressão Gênica , Raízes de Plantas/genética , Transdução de Sinais
7.
BMC Plant Biol ; 13: 112, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23919896

RESUMO

BACKGROUND: Spaceflight presents a novel environment that is outside the evolutionary experience of terrestrial organisms. Full activation of the International Space Station as a science platform complete with sophisticated plant growth chambers, laboratory benches, and procedures for effective sample return, has enabled a new level of research capability and hypothesis testing in this unique environment. The opportunity to examine the strategies of environmental sensing in spaceflight, which includes the absence of unit gravity, provides a unique insight into the balance of influence among abiotic cues directing plant growth and development: including gravity, light, and touch. The data presented here correlate morphological and transcriptome data from replicated spaceflight experiments. RESULTS: The transcriptome of Arabidopsis thaliana demonstrated organ-specific changes in response to spaceflight, with 480 genes showing significant changes in expression in spaceflight plants compared with ground controls by at least 1.9-fold, and 58 by more than 7-fold. Leaves, hypocotyls, and roots each displayed unique patterns of response, yet many gene functions within the responses are related. Particularly represented across the dataset were genes associated with cell architecture and growth hormone signaling; processes that would not be anticipated to be altered in microgravity yet may correlate with morphological changes observed in spaceflight plants. As examples, differential expression of genes involved with touch, cell wall remodeling, root hairs, and cell expansion may correlate with spaceflight-associated root skewing, while differential expression of auxin-related and other gravity-signaling genes seemingly correlates with the microgravity of spaceflight. Although functionally related genes were differentially represented in leaves, hypocotyls, and roots, the expression of individual genes varied substantially across organ types, indicating that there is no single response to spaceflight. Rather, each organ employed its own response tactics within a shared strategy, largely involving cell wall architecture. CONCLUSIONS: Spaceflight appears to initiate cellular remodeling throughout the plant, yet specific strategies of the response are distinct among specific organs of the plant. Further, these data illustrate that in the absence of gravity plants rely on other environmental cues to initiate the morphological responses essential to successful growth and development, and that the basis for that engagement lies in the differential expression of genes in an organ-specific manner that maximizes the utilization of these signals--such as the up-regulation of genes associated with light-sensing in roots.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Voo Espacial , Transcriptoma , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ecossistema , Regulação da Expressão Gênica de Plantas , Especificidade da Espécie
8.
Am J Bot ; 100(1): 235-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23258370

RESUMO

PREMISE OF THE STUDY: Gravity has been a major force throughout the evolution of terrestrial organisms, and plants have developed exquisitely sensitive, regulated tropisms and growth patterns that are based on the gravity vector. The nullified gravity during spaceflight allows direct assessment of gravity roles. The microgravity environments provided by the Space Shuttle and International Space Station have made it possible to seek novel insights into gravity perception at the organismal, tissue, and cellular levels. Cell cultures of Arabidopsis thaliana perceive and respond to spaceflight, even though they lack the specialized cell structures normally associated with gravity perception in intact plants; in particular, genes for a specific subset of heat shock proteins (HSPs) and factors (HSFs) are induced. Here we ask if similar changes in HSP gene expression occur during nonspaceflight changes in gravity stimulation. METHODS: Quantitative RT-qPCR was used to evaluate mRNA levels for Hsp17.6A and Hsp101 in cell cultures exposed to four conditions: spaceflight (mission STS-131), hypergravity (centrifugation at 3 g or 16 g), sustained two-dimensional clinorotation, and transient milligravity achieved on parabolic flights. KEY RESULTS: We showed that HSP genes were induced in cells only in response to sustained clinorotation. Transient microgravity intervals in parabolic flight and various hypergravity conditions failed to induce HSP genes. CONCLUSIONS: We conclude that nondifferentiated cells do indeed sense their gravity environment and HSP genes are induced only in response to prolonged microgravity or simulated microgravity conditions. We hypothesize that HSP induction upon microgravity indicates a role for HSP-related proteins in maintaining cytoskeletal architecture and cell shape signaling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/citologia , Arabidopsis/genética , Genes de Plantas/genética , Proteínas de Choque Térmico/genética , Voo Espacial , Técnicas de Cultura de Tecidos/métodos , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Hipergravidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ausência de Peso
9.
Front Plant Sci ; 3: 190, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22934100

RESUMO

The 14-3-3 proteins have emerged as major phosphoprotein interaction proteins and thereby constitute a key node in the Arabidopsis Interactome Map, a node through which a large number of important signals pass. Throughout their history of discovery and description, the 14-3-3s have been described as protein families and there has been some evidence that the different 14-3-3 family members within any organism might carry isoform-specific functions. However, there has also been evidence for redundancy of 14-3-3 function, suggesting that the perceived 14-3-3 diversity may be the accumulation of neutral mutations over evolutionary time and as some 14-3-3 genes develop tissue or organ-specific expression. This situation has led to a currently unresolved question - does 14-3-3 isoform sequence diversity indicate functional diversity at the biochemical or cellular level? We discuss here some of the key observations on both sides of the resulting debate, and present a set of contrastable observations to address the theory functional diversity does exist among 14-3-3 isoforms. The resulting model suggests strongly that there are indeed functional specificities in the 14-3-3s of Arabidopsis. The model further suggests that 14-3-3 diversity and specificity should enter into the discussion of 14-3-3 roles in signal transduction and be directly approached in 14-3-3 experimentation. It is hoped that future studies involving 14-3-3s will continue to address specificity in experimental design and analysis.

10.
Astrobiology ; 12(1): 40-56, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22221117

RESUMO

The spaceflight environment presents unique challenges to terrestrial biology, including but not limited to the direct effects of gravity. As we near the end of the Space Shuttle era, there remain fundamental questions about the response and adaptation of plants to orbital spaceflight conditions. We address a key baseline question of whether gene expression changes are induced by the orbital environment, and then we ask whether undifferentiated cells, cells presumably lacking the typical gravity response mechanisms, perceive spaceflight. Arabidopsis seedlings and undifferentiated cultured Arabidopsis cells were launched in April, 2010, as part of the BRIC-16 flight experiment on STS-131. Biologically replicated DNA microarray and averaged RNA digital transcript profiling revealed several hundred genes in seedlings and cell cultures that were significantly affected by launch and spaceflight. The response was moderate in seedlings; only a few genes were induced by more than 7-fold, and the overall intrinsic expression level for most differentially expressed genes was low. In contrast, cell cultures displayed a more dramatic response, with dozens of genes showing this level of differential expression, a list comprised primarily of heat shock-related and stress-related genes. This baseline transcriptome profiling of seedlings and cultured cells confirms the fundamental hypothesis that survival of the spaceflight environment requires adaptive changes that are both governed and displayed by alterations in gene expression. The comparison of intact plants with cultures of undifferentiated cells confirms a second hypothesis: undifferentiated cells can detect spaceflight in the absence of specialized tissue or organized developmental structures known to detect gravity.


Assuntos
Arabidopsis/genética , Meio Ambiente Extraterreno , Regulação da Expressão Gênica de Plantas , Voo Espacial , Transcriptoma/genética , Arabidopsis/citologia , Células Cultivadas , Computadores , Perfilação da Expressão Gênica , Genes de Plantas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Tamanho da Amostra , Plântula/genética , Temperatura
11.
Semin Cell Dev Biol ; 22(7): 720-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21907297

RESUMO

Plant 14-3-3 isoforms, like their highly conserved homologues in mammals, function by binding to phosphorylated client proteins to modulate their function. Through the regulation of a diverse range of proteins including kinases, transcription factors, structural proteins, ion channels and pathogen defense-related proteins, they are being implicated in an expanding catalogue of physiological functions in plants. 14-3-3s themselves are affected, both transcriptionally and functionally, by the extracellular and intracellular environment of the plant. They can modulate signaling pathways that transduce inputs from the environment and also the downstream proteins that elicit the physiological response. This review covers some of the key emerging roles for plant 14-3-3s including their role in the response to the plant extracellular environment, particularly environmental stress, pathogens and light conditions. We also address potential key roles in primary metabolism, hormone signaling, growth and cell division.


Assuntos
Proteínas 14-3-3/metabolismo , Metabolismo Energético , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas 14-3-3/genética , Regulação da Expressão Gênica de Plantas , Luz , Fosforilação , Proteínas de Plantas/genética , Ligação Proteica , Transdução de Sinais/fisiologia , Estresse Fisiológico
12.
Mol Biochem Parasitol ; 166(1): 47-53, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19428672

RESUMO

Babesia bovis is an intraerythrocytic hemoparasite of widespread distribution, which adversely affects livestock production in many regions of the world. This parasite establishes persistent infections of long duration, at least in part through rapid antigenic variation of the VESA1 protein on the infected-erythrocyte surface. To understand the dynamics of in vivo antigenic variation among the parasite population it is necessary to have sensitive and broadly applicable tools enabling monitoring of variation events in parasite antigen genes. To address this need for B. bovis, "universal" primers for the polymerase chain reaction have been designed for the ves1alpha gene, spanning from exon 2 to near the 3' end of cysteine-lysine-rich domain (CKRD) sequences in exon 3. These primers robustly amplified this segment, with minimal bias, from essentially the entire repertoire of full-length ves1alpha sequences in the B. bovis Mexico isolate genome, and are equivalently present in other isolates. On purified genomic DNA, this primer set can achieve a sensitivity of 10 genome equivalents or less. When applied to the amplification of cDNA derived from the B. bovis C9.1 clonal line evidence consistent with mutually exclusive transcription of the ves1alpha gene was obtained, concomitant with detection of numerous mutational events among members of the parasite population. These characteristics of the primers will facilitate the application of polymerase chain reaction-based methodologies to the study of B. bovis population and antigenic switching dynamics.


Assuntos
Antígenos de Superfície/genética , Babesia bovis/genética , Genes de Protozoários/genética , Reação em Cadeia da Polimerase/métodos , Animais , Primers do DNA/química , Primers do DNA/genética , Regulação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Dinâmica Populacional , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...