Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916908

RESUMO

Understanding plant responses to individual stresses does not mean that we understand real world situations, where stresses usually combine and interact. These interactions arise at different levels, from stress exposure to the molecular networks of the stress response. Here, we built an in-depth multi-omics description of plant responses to mild water (W) and nitrogen (N) limitations, either individually or combined, among five genetically different Arabidopsis (Arabidopsis thaliana) accessions. We highlight the different dynamics in stress response through integrative traits such as rosette growth and the physiological status of the plants. We also used transcriptomics and metabolomics profiling during a stage when the plant response was stabilized to determine the wide diversity in stress-induced changes among accessions, highlighting the limited reality of a 'universal' stress response. The main effect of the WxN interaction was an attenuation of the N-deficiency syndrome when combined with mild drought, but to a variable extent depending on the accession. Other traits subject to WxN interactions are often accession-specific. Multi-omics analyses identified a subset of transcript-metabolite clusters that are critical to stress responses but essentially variable according to the genotype factor. Including intra-specific diversity in our descriptions of plant stress response places our findings in perspective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...