Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1220, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869053

RESUMO

Final organ size and shape result from volume expansion by growth and shape changes by contractility. Complex morphologies can also arise from differences in growth rate between tissues. We address here how differential growth guides the morphogenesis of the growing Drosophila wing imaginal disc. We report that 3D morphology results from elastic deformation due to differential growth anisotropy between the epithelial cell layer and its enveloping extracellular matrix (ECM). While the tissue layer grows in plane, growth of the bottom ECM occurs in 3D and is reduced in magnitude, thereby causing geometric frustration and tissue bending. The elasticity, growth anisotropy and morphogenesis of the organ are fully captured by a mechanical bilayer model. Moreover, differential expression of the Matrix metalloproteinase MMP2 controls growth anisotropy of the ECM envelope. This study shows that the ECM is a controllable mechanical constraint whose intrinsic growth anisotropy directs tissue morphogenesis in a developing organ.


Assuntos
Drosophila , Matriz Extracelular , Animais , Anisotropia , Tamanho do Órgão , Elasticidade
2.
Phys Rev E ; 99(5-1): 053001, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31212512

RESUMO

Surface growth is a crucial component of many natural and artificial processes, from cell proliferation to additive manufacturing. In elastic systems surface growth is usually accompanied by the development of geometrical incompatibility, leading to residual stresses and triggering various instabilities. In a recent paper [G. Zurlo and L. Truskinovsky, Phys. Rev. Lett. 119, 048001 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.048001] we presented a linearized elasticity theory of incompatible surface growth, which provides a quantitative link between deposition protocols and postgrowth states of stress. Here we extend this analysis to account for both physical and geometrical nonlinearities of an elastic solid. This development reveals the shortcomings of the linearized theory, in particular its inability to describe kinematically confined surface growth and to account for growth-induced elastic instabilities.

3.
Phys Rev Lett ; 119(4): 048001, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29341729

RESUMO

Geometrically frustrated solids with a non-Euclidean reference metric are ubiquitous in biology and are becoming increasingly relevant in technological applications. Often they acquire a targeted configuration of incompatibility through the surface accretion of mass as in tree growth or dam construction. We use the mechanics of incompatible surface growth to show that geometrical frustration developing during deposition can be fine-tuned to ensure a particular behavior of the system in physiological (or working) conditions. As an illustration, we obtain an explicit 3D printing protocol for arteries, which guarantees stress uniformity under inhomogeneous loading, and for explosive plants, allowing a complete release of residual elastic energy with a single cut. Interestingly, in both cases reaching the physiological target requires the incompatibility to have a topological (global) component.

4.
Biomech Model Mechanobiol ; 12(6): 1233-42, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23460499

RESUMO

In this work, some implications of a recent model for the mechanical behavior of biological membranes (Deseri et al. in Continuum Mech Thermodyn 20(5):255-273, 2008) are exploited by means of a prototypical one-dimensional problem. We show that the knowledge of the membrane stretching elasticity permits to establish a precise connection among surface tension, bending rigidities and line tension during phase transition phenomena. For a specific choice of the stretching energy density, we evaluate these quantities in a membrane with coexistent fluid phases, showing a satisfactory comparison with the available experimental measurements. Finally, we determine the thickness profile inside the boundary layer where the order-disorder transition is observed.


Assuntos
Elasticidade , Membranas/fisiologia , Fenômenos Biomecânicos , Módulo de Elasticidade/fisiologia , Modelos Biológicos , Estresse Mecânico , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...