Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36616593

RESUMO

Investigations into polymer composites are mainly focused on properties dependent on glass fiber reinforcement and particulate fillers. In the present study, the effect of the binder was examined. The specimens were produced with two types of epoxy resin, with similar numbers of glass mat layers and similar proportions of quartz powder added. However, one group was fabricated with an emulsion binder in the glass mats and another group with a powder binder. Attention was concentrated on the tribological properties of the as-prepared composites, though their strength was examined as well. The hardness of the Sikafloor matrix was found to be much more sensitive to the applied binder than that of the MC-DUR matrix. No direct correlation between the microhardness and the specific wear rate was observed and increasing the particulate filler proportion did not cause a direct increase of the specific wear rate. In particular, the highest specific wear rate, around 350 J/g, was reached for both matrices with a 1% quartz addition when the emulsion binder was applied, while in the case of the powder binder it was with 6% quartz with the MC-DUR matrix, and there was no quartz addition with the Sikafloor matrix. The highest microhardness, HV0.5 = 25, in turn, was reached for the mats with the emulsion binder in the Sikafloor matrix with an addition of 10% quartz powder, while the highest friction coefficient was exhibited in the composite with the MC-DUR matrix, when 1% of the quartz powder and the emulsion binder were applied.

2.
Materials (Basel) ; 15(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079341

RESUMO

The paper presents and discusses questions on structure formation during the sintering process of Cr2O3-based composites using the hot pressing method, when a chemical reaction between the components takes place. The task was difficult because Cr2O3 decomposes when sintered at temperatures above 1300 °C. The proposed novel method allowed for interaction between aluminum and chromia, thus avoiding the decomposition of the latter. Here, ultrafine aluminum powder played the role of the active agent forming a liquid phase and reacting with Cr2O3. The appearance of the solid solutions of (Cr,Al)2O3 with different stoichiometry of Cr and Al depended on the aluminum content in the initial mixture. The solid solution significantly strengthened boundaries between composite phases, resulting in the composite material of high fracture toughness between 5 and 7 MPa m½ and bending strength of ca. 500 MPa. The best mechanical properties exhibited the cermet with 22 wt.% of the restored chromium.

3.
Materials (Basel) ; 14(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34772030

RESUMO

Fabrication of alumina-tungsten carbide nanocomposite was investigated. Characteristics of the densification and sintering were analyzed considering both the nano-size particle starting powders and the processing stages. Different heating rates were generated during densification and consolidation with a maximal load was applied only after a temperature of 1000 °C was reached. Due to the varying dominance of different physical processes affecting the grains, appropriate heating rates and pressure at different stages ensured that a structure with submicron grains was obtained. With directly applied alternating current, it was found that the proportion Al2O3 (50 wt.%)-WC provided the highest fracture toughness, and a sintering temperature above 1600 °C was found to be disadvantageous. High heating rates and a short sintering time enabled the process to be completed in 12 min, saving energy and time.

4.
Materials (Basel) ; 14(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206754

RESUMO

The aim of our research was to investigate the effect of a small nanocellulose (NC) addition on an improvement of the mechanical properties of epoxy composites. A procedure of chemical extraction from pressed lignin was used to obtain nanocellulose fibers. The presence of nanoparticles in the cellulose pulp was confirmed by FTIR/ATR spectra as well as measurement of nanocellulose particle size using a Zetasizer analyzer. Epoxy composites with NC contents from 0.5% to 1.5% w/w were prepared. The obtained composites were subjected to strength tests, such as impact strength (IS) and resistance to three-point bending with a determination of critical stress intensity factor (Kc). The impact strength of nanocellulose composites doubled in comparison to the unmodified epoxy resin (EP 0). Moreover, Kc was increased by approximately 50% and 70% for the 1.5 and 0.5% w/w NC, respectively. The maximum value of stress at break was achieved at 1% NC concentration in EP and it was 15% higher than that for unmodified epoxy resin. The highest value of destruction energy was characterized by the composition with 0.5% NC and corresponds to the increase of 102% in comparison with EP 0. Based on the analysis of the results it was noted that satisfactory improvement of the mechanical properties of the composite was achieved with a very small addition of nanofiller while other research indicates the need to add much more nanocellulose. It is also expected that this kind of use of raw materials will allow increasing the economic efficiency of the nanocomposite preparation process. Moreover, nanocomposites obtained in this way can be applied as elements of machines or as a modified epoxy matrix for sandwich composites, enabling production of the structure material with reduced weight but improved mechanical properties.

5.
Materials (Basel) ; 14(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34300741

RESUMO

The paper presents the results of investigations on the glass fiber reinforced composite for the floor panels with quartz powder additions of different percentages in terms of wear resistance, friction coefficient, hardness, and strength. The wear resistance was assessed using the specific wear work parameter determined by the novel tribotester with friction band. It was found that an increase in quartz powder addition to the tested polymer composite does not enhance its mechanical increasingly properties. From the wear tests it can be concluded that only the composite with four layers of glass fibers and 6 wt.% of the quartz powder exhibited improvement of the wear resistance, but its shear strength was lower than that of the two layer specimens with similar powder proportions. On the other hand, the highest friction coefficient's, which is microhardness HV05, shear strength and impact strength were attained for the composite with two layers of glass fibers and 3 wt.% of the quartz powder. Among four layer samples, very close results were obtained for the samples with 10% of powder and insignificantly lower strength were observed for the samples with no powder added. The results revealed that there is no clear trend for the effect of silica filler percentage on the composite performance, which indicates the need for individual purpose-dependent decision making in the design of the glass fiber reinforced composites with quartz powder filler.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...