Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(21): e2306361, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38109121

RESUMO

Artificial van der Waals heterostructures, obtained by stacking two-dimensional (2D) materials, represent a novel platform for investigating physicochemical phenomena and applications. Here, the electrochemistry at the one-dimensional (1D) edge of a graphene sheet, sandwiched between two hexagonal boron nitride (hBN) flakes, is reported. When such an hBN/graphene/hBN heterostructure is immersed in a solution, the basal plane of graphene is encapsulated by hBN, and the graphene edge is exclusively available in the solution. This forms an electrochemical nanoelectrode, enabling the investigation of electron transfer using several redox probes, e.g., ferrocene(di)methanol, hexaammineruthenium, methylene blue, dopamine and ferrocyanide. The low capacitance of the van der Waals edge electrode facilitates cyclic voltammetry at very high scan rates (up to 1000 V s-1), allowing voltammetric detection of redox species down to micromolar concentrations with sub-second time resolution. The nanoband nature of the edge electrode allows operation in water without added electrolyte. Finally, two adjacent edge electrodes are realized in a redox-cycling format. All the above-mentioned phenomena can be investigated at the edge, demonstrating that nanoscale electrochemistry is a new application avenue for van der Waals heterostructures. Such an edge electrode will be useful for studying electron transfer mechanisms and the detection of analyte species in ultralow sample volumes.

3.
ACS Appl Electron Mater ; 5(9): 4925-4932, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779890

RESUMO

The reliability of analysis is becoming increasingly important as point-of-care diagnostics are transitioning from single-analyte detection toward multiplexed multianalyte detection. Multianalyte detection benefits greatly from complementary metal-oxide semiconductor (CMOS) integrated sensing solutions, offering miniaturized multiplexed sensing arrays with integrated readout electronics and extremely large sensor counts. The development of CMOS back end of line integration compatible graphene field-effect transistor (GFET)-based biosensing has been rapid during the past few years, in terms of both the fabrication scale-up and functionalization toward biorecognition from real sample matrices. The next steps in industrialization relate to improving reliability and require increased statistics. Regarding functionalization toward truly quantitative sensors, on-chip bioassays with improved statistics require sensor arrays with reduced variability in functionalization. Such multiplexed bioassays, whether based on graphene or on other sensitive nanomaterials, are among the most promising technologies for label-free electrical biosensing. As an important step toward that, we report wafer-scale fabrication of CMOS-integrated GFET arrays with high yield and uniformity, designed especially for biosensing applications. We demonstrate the operation of the sensing platform array with 512 GFETs in simultaneous detection for the sodium chloride concentration series. This platform offers a truly statistical approach on GFET-based biosensing and further to quantitative and multianalyte sensing. The reported techniques can also be applied to other fields relying on functionalized GFETs, such as gas or chemical sensing or infrared imaging.

4.
Nanomaterials (Basel) ; 13(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570507

RESUMO

Graphene-based materials may pose a potential risk for human health due to occupational exposure, mainly by inhalation. This study was carried out on bronchial epithelial 16HBE14o- cells to evaluate the role of chemical reduction and formulation of graphene oxide (GO) on its cytotoxic potential. To this end, the effects of GO were compared to its chemically reduced form (rGO) and its stable water dispersion (wdGO), by means of cell viability reduction, reactive oxygen species (ROS) generation, pro-inflammatory mediators release and genotoxicity. These materials induced a concentration-dependent cell viability reduction with the following potency rank: rGO > GO >> wdGO. After 24 h exposure, rGO reduced cell viability with an EC50 of 4.8 µg/mL (eight-fold lower than that of GO) and was the most potent material in inducing ROS generation, in contrast to wdGO. Cytokines release and genotoxicity (DNA damage and micronucleus induction) appeared low for all the materials, with wdGO showing the lowest effect, especially for the former. These results suggest a key role for GO reduction in increasing GO cytotoxic potential, probably due to material structure alterations resulting from the reduction process. In contrast, GO formulated in a stable dispersion seems to be the lowest cytotoxic material, presumably due to its lower cellular internalization and damaging capacity.

5.
Nanoscale ; 15(3): 1076-1085, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36546457

RESUMO

COVID-19, caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), originated a global health crisis, causing over 2 million casualties and altering human daily life all over the world. This pandemic emergency revealed the limitations of current diagnostic tests, highlighting the urgency to develop faster, more precise and sensitive sensors. Graphene field effect transistors (GFET) are analytical platforms that enclose all these requirements. However, the design of a sensitive and robust GFET is not a straightforward objective. In this work, we report a GFET array biosensor for the detection of SARS-CoV-2 spike protein using the human membrane protein involved in the virus internalisation: angiotensin-converting enzyme 2 (ACE2). By finely controlling the graphene functionalisation, by tuning the Debye length, and by deeply characterising the ACE2-spike protein interactions, we have been able to detect the target protein with an extremely low limit of detection (2.94 aM). This work set the basis for a new class of analytical platforms, based on human membrane proteins, with the potential to detect a broad variety of pathogens, even before their isolation, being a powerful tool in the fight against future pandemics.


Assuntos
COVID-19 , Grafite , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica
6.
J Am Chem Soc ; 143(32): 12524-12534, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34355571

RESUMO

Iridium and ruthenium and their oxides/hydroxides are the best candidates for the oxygen evolution reaction under harsh acidic conditions owing to the low overpotentials observed for Ru- and Ir-based anodes and the high corrosion resistance of Ir-oxides. Herein, by means of cutting edge operando surface and bulk sensitive X-ray spectroscopy techniques, specifically designed electrode nanofabrication and ab initio DFT calculations, we were able to reveal the electronic structure of the active IrOx centers (i.e., oxidation state) during electrocatalytic oxidation of water in the surface and bulk of high-performance Ir-based catalysts. We found the oxygen evolution reaction is controlled by the formation of empty Ir 5d states in the surface ascribed to the formation of formally IrV species leading to the appearance of electron-deficient oxygen species bound to single iridium atoms (µ1-O and µ1-OH) that are responsible for water activation and oxidation. Oxygen bound to three iridium centers (µ3-O) remains the dominant species in the bulk but do not participate directly in the electrocatalytic reaction, suggesting bulk oxidation is limited. In addition a high coverage of a µ1-OO (peroxo) species during the OER is excluded. Moreover, we provide the first photoelectron spectroscopic evidence in bulk electrolyte that the higher surface-to-bulk ratio in thinner electrodes enhances the material usage involving the precipitation of a significant part of the electrode surface and near-surface active species.

7.
Nanomaterials (Basel) ; 11(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467115

RESUMO

In this work, we report a novel method of label-free detection of small molecules based on direct observation of interferometric signal change in graphene-modified glasses. The interferometric sensor chips are fabricated via a conventional wet transfer method of CVD-grown graphene onto the glass coverslips, lowering the device cost and allowing for upscaling the sensor fabrication. For the first time, we report the use of graphene functionalized by the aptamer as the bioreceptor, in conjunction with Spectral-Phase Interferometry (SPI) for detection of ochratoxin A (OTA). In a direct assay with an OTA-specific aptamer, we demonstrated a quick and significant change of the optical signal in response to the maximum tolerable level of OTA concentration. The sensor regeneration is possible in urea solution. The developed platform enables a direct method of kinetic analysis of small molecules using a low-cost optical chip with a graphene-aptamer sensing layer.

8.
Nanotechnology ; 32(4): 045502, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33049728

RESUMO

The discovery of the field effect in graphene initiated the development of graphene field effect transistor (FET) sensors, wherein high mobility surface conduction is readily modulated by surface adsorption. For all graphene transistor sensors, low-frequency 1/f noise determines sensor resolution, and the absolute measure of 1/f noise is thus a crucial performance metric for sensor applications. Here we report a simple method for reducing 1/f noise by scaling the active area of graphene FET sensors. We measured 1/f noise in graphene FETs with size 5 µm × 5 µm to 5.12 mm × 5.12 mm, observing more than five orders of magnitude reduction in 1/f noise. We report the lowest normalized graphene 1/f noise parameter observed to date, 5 × 10-13, and we demonstrate a sulfate ion sensor with a record resolution of 1.2 × 10-3 log molar concentration units. Our work highlights the importance of area scaling in graphene FET sensor design, wherein increased channel area improves sensor resolution.

9.
Nanomaterials (Basel) ; 10(8)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824126

RESUMO

In the frame of graphene-based material (GBM) hazard characterization, particular attention should be given to the cutaneous effects. Hence, this study investigates if HaCaT skin keratinocytes exposed to high concentrations of few-layer graphene (FLG) or partially dehydrated graphene oxide (d-GO) for a short time can recover from the cytotoxic insult, measured by means of cell viability, mitochondrial damage and oxidative stress, after GBM removal from the cell medium. When compared to 24 or 72 h continuous exposure, recovery experiments suggest that the cytotoxicity induced by 24 h exposure to GBM is only partially recovered after 48 h culture in GBM-free medium. This partial recovery, higher for FLG as compared to GO, is not mediated by autophagy and could be the consequence of GBM internalization into cells. The ability of GBMs to be internalized inside keratinocytes together with the partial reversibility of the cellular damage is important in assessing the risk associated with skin exposure to GBM-containing devices.

10.
Nat Commun ; 11(1): 3226, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591504

RESUMO

Real-time, high resolution, simultaneous measurement of multiple ionic species is challenging with existing chromatographic, spectrophotometric and potentiometric techniques. Potentiometric ion sensors exhibit limitations in both resolution and selectivity. Herein, we develop wafer scale graphene transistor technology for overcoming these limitations. Large area graphene is an ideal material for high resolution ion sensitive field effect transistors (ISFETs), while simultaneously enabling facile fabrication as compared to conventional semiconductors. We develop the ISFETs into an array and apply Nikolskii-Eisenman analysis to account for cross-sensitivity and thereby achieve high selectivity. We experimentally demonstrate real-time, simultaneous concentration measurement of K+, Na+, [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and Cl- with a resolution of [Formula: see text] concentration units. The array achieves an accuracy of  ±0.05 log concentration. Finally, we demonstrate real-time ion concentration measurement in an aquarium with lemnoideae lemna over three weeks, where mineral uptake by aquatic organisms can be observed during their growth.


Assuntos
Grafite/química , Eletrodos Seletivos de Íons , Transistores Eletrônicos , Ânions , Cátions , Eletrólitos/química , Concentração de Íons de Hidrogênio , Imagem Óptica , Temperatura , Fatores de Tempo
11.
Materials (Basel) ; 13(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138189

RESUMO

The choice of the right material is essential in microwave processing. The carbon materials are good microwave absorbers, which allows them to be transformed by microwave heating into new carbon materials with adapted properties, capable of heating other materials indirectly. In this paper, the microwave heating of graphene as reinforcement of the lithium aluminosilicate (LAS) ceramics has been explored. LAS ceramics have a near-zero coefficient of thermal expansion and exhibit an effective and efficient heating by microwave. Nevertheless, we have found that the graphene did not show any significant response to the microwave radiation and, hence, the interaction as mechanical reinforcement with the LAS material is harmful. The possible benefits of graphene materials to microwave technology are widely known; however, the mechanism involved in the interaction of microwave radiation with ceramic-graphene composites with high dielectric loss factors has not been addressed earlier.

12.
Sci Rep ; 10(1): 3223, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081982

RESUMO

Graphene has become the focus of extensive research efforts and it can now be produced in wafer-scale. For the development of next generation graphene-based electronic components, electrical characterization of graphene is imperative and requires the measurement of work function, sheet resistance, carrier concentration and mobility in both macro-, micro- and nano-scale. Moreover, commercial applications of graphene require fast and large-area mapping of electrical properties, rather than obtaining a single point value, which should be ideally achieved by a contactless measurement technique. We demonstrate a comprehensive methodology for measurements of the electrical properties of graphene that ranges from nano- to macro- scales, while balancing the acquisition time and maintaining the robust quality control and reproducibility between contact and contactless methods. The electrical characterisation is achieved by using a combination of techniques, including magneto-transport in the van der Pauw geometry, THz time-domain spectroscopy mapping and calibrated Kelvin probe force microscopy. The results exhibit excellent agreement between the different techniques. Moreover, we highlight the need for standardized electrical measurements in highly controlled environmental conditions and the application of appropriate weighting functions.

13.
Nanoscale ; 12(2): 610-622, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31829371

RESUMO

Besides inhalation, skin contact may be considered one of the most relevant exposure routes to graphene-based materials (GBMs). However, very few data on the cutaneous toxicity of these materials are available, so far. This study is focused on skin irritation potential of a panel of GBMs: few-layer graphene (FLG), exfoliated by ball milling of graphite, FLG exfoliated by ultrasonication using sodium dodecyl sulfate (FLG-SDS) or sodium dodecylbenzenesulfonate (FLG-SDBS), CVD-graphene, obtained by chemical vapor deposition, graphene oxide (GO) and reduced GO (rGO). Skin irritation was assessed using the SkinEthic™ Reconstructed human Epidermis (RhE), following the Organisation for Economic Co-operation and Development (OECD) Test Guideline (TG) 439. Even though not validated for nanomaterials, the OCED TG 439 turned out to be applicable also for GBM testing, since no interference with the methylthiazolyldiphenyl-tetrazolium bromide (MTT) reduction, used as a final readout, was found. Furthermore, direct epidermal exposure to powdered GBMs mimics the actual human exposure, avoiding interference by the cell culture medium (protein corona formation). Only GBMs prepared with irritant surfactants (FLG-SDS and FLG-SDBS), but not the others, reduced RhE viability at levels lower than those predicting skin irritation (≤50%), suggesting irritant properties. This result was further confirmed by measuring cytokine (IL-1α, IL-6 and IL-8) release by GBM-treated RhE and by histological analysis as additional readouts to implement the guideline. On the whole, these results demonstrate that GBMs prepared with non-irritant exfoliation agents do not induce skin irritation after a single acute exposure.


Assuntos
Alternativas aos Testes com Animais , Grafite/toxicidade , Nanoestruturas/toxicidade , Testes de Irritação da Pele , Citocinas/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Proteínas Filagrinas , Grafite/química , Humanos , Modelos Biológicos , Nanoestruturas/química , Tensoativos/química , Tensoativos/toxicidade
14.
Sci Rep ; 9(1): 10655, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337774

RESUMO

Electronic applications of large-area graphene films require rapid and accurate methods to map their electrical properties. Here we present the first electrical resistance tomography (ERT) measurements on large-area graphene samples, obtained with a dedicated measurement setup and reconstruction software. The outcome of an ERT measurement is a map of the graphene electrical conductivity. The same setup allows to perform van der Pauw (vdP) measurements of the average conductivity. We characterised the electrical conductivity of chemical-vapour deposited graphene samples by performing ERT, vdP and scanning terahertz time-domain spectroscopy (TDS), the last one by means of a commercial instrument. The measurement results are compared and discussed, showing the potential of ERT as an accurate and reliable technique for the electrical characterization of graphene samples.

15.
Nanotechnology ; 30(18): 185703, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-30630140

RESUMO

The superior intrinsic mechanical properties of graphene have been widely studied and utilized to enhance the mechanical properties of various composite materials. However, it is still unclear how heterostructures incorporating graphene behave, and to what extent graphene influences their mechanical response. In this work, a series of graphene/Al2O3 composite films were fabricated via atomic layer deposition of Al2O3 on graphene, and their mechanical behavior was studied using an experimental-computational approach. The inclusion of monolayer chemical vapor deposited graphene between ultrathin Al2O3 films (1.5-4.5 nm thickness) was found to enhance the overall stiffness by as much as 70% compared to a pure Al2O3 film of similar thickness (∼150 GPa to ∼250 GPa). Here, for the first time, the combination of graphene and Al2O3 in vertically-stacked heterostructures results in advanced hybrid films of unprecedented mechanical stiffness that also possess qualities desirable for graphene-based transistors and flexible electronics.

16.
Nat Commun ; 9(1): 4837, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446645

RESUMO

Electro-optic modulators based on micro-electromechanical systems have found success as elements for optical projectors, for simplified optical spectrometers, and as reflective-type screens that make use of light interference (Interferometric Modulator Display technology). The latter concept offers an exciting avenue for graphene nanomechanical structures to replace classical micro-electromechanical devices and bring about enhancement in performance, especially switching speed and voltage. In this work we study the optical response of electrically actuated graphene drumheads by means of spectrometric and stroboscopic experiments. The color reproducibility and speed of these membranes in producing the desired electro-optic modulation makes them suitable as pixels for high refresh rate displays. As a proof of concept, we demonstrate a Graphene Interferometric Modulator Display prototype with 5 µm-in-diameter pixels that compose a high resolution image (2500 pixels per inch)-equivalent to a 5″ display of 12K-whose color can be changed at frame rates of at least 400 Hz.

17.
ACS Appl Mater Interfaces ; 10(18): 16169-16176, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29641171

RESUMO

The primary objective of this work is to demonstrate a novel sensor system as a convenient vehicle for scaled-up repeatability and the kinetic analysis of a pixelated testbed. This work presents a sensor system capable of measuring hundreds of functionalized graphene sensors in a rapid and convenient fashion. The sensor system makes use of a novel array architecture requiring only one sensor per pixel and no selector transistor. The sensor system is employed specifically for the evaluation of Co(tpfpp)ClO4 functionalization of graphene sensors for the detection of ammonia as an extension of previous work. Co(tpfpp)ClO4 treated graphene sensors were found to provide 4-fold increased ammonia sensitivity over pristine graphene sensors. Sensors were also found to exhibit excellent selectivity over interfering compounds such as water and common organic solvents. The ability to monitor a large sensor array with 160 pixels provides insights into performance variations and reproducibility-critical factors in the development of practical sensor systems. All sensors exhibit the same linearly related responses with variations in response exhibiting Gaussian distributions, a key finding for variation modeling and quality engineering purposes. The mean correlation coefficient between sensor responses was found to be 0.999 indicating highly consistent sensor responses and excellent reproducibility of Co(tpfpp)ClO4 functionalization. A detailed kinetic model is developed to describe sensor response profiles. The model consists of two adsorption mechanisms-one reversible and one irreversible-and is shown capable of fitting experimental data with a mean percent error of 0.01%.

18.
Nanoscale ; 9(44): 17439-17449, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29105718

RESUMO

We describe the fabrication and characterisation of a capacitive pressure sensor formed by an ultra-thin graphene-polymer heterostructure membrane spanning a large array of micro-cavities each up to 30 µm in diameter with 100% yield. Sensors covering an area of just 1 mm2 show reproducible pressure transduction under static and dynamic loading up to pressures of 250 kPa. The measured capacitance change in response to pressure is in good agreement with calculations. Further, we demonstrate high-sensitivity pressure sensors by applying a novel strained membrane transfer and optimising the sensor architecture. This method enables suspended structures with less than 50 nm of air dielectric gap, giving a pressure sensitivity of 123 aF Pa-1 mm-2 over a pressure range of 0 to 100 kPa.

19.
ACS Appl Mater Interfaces ; 9(42): 36665-36674, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28956593

RESUMO

Despite the availability of different antibiotics, bacterial infections are still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic treatment is due to a general poor antibiotic penetration to bacterial infection sites as well as the development of antibiotic-resistant pathogens. In the case of skin infection, the wound is covered by exudate, making it impermeable to topical antibiotics. The development of a flexible patch allowing a rapid and highly efficient treatment of subcutaneous wound infections via photothermal irradiation is presented here. The skin patch combines the near-infrared photothermal properties of a gold nanohole array formed by self-assembly of colloidal structures on flexible polyimide films with that of reduced graphene oxide nanosheets for laser-gated pathogen inactivation. In vivo tests performed on mice with subcutaneous skin infection and treated with the photothermal skin patch show wound healing of the infected site, while nontreated areas result in necrotic muscular fibers and bacterial infiltrate. No loss in efficiency is observed upon multiple use of these patches during in vivo experiments because of their robustness.


Assuntos
Nanoestruturas , Animais , Antibacterianos , Infecções Bacterianas , Ouro , Grafite , Camundongos , Óxidos
20.
Langmuir ; 33(33): 8181-8191, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28772075

RESUMO

Toxicity evaluation for the proper use of graphene oxide (GO) in biomedical applications involving intravenous injections is crucial, but the GO circulation time and blood interactions are largely unknown. It is thought that GO may cause physical disruption (hemolysis) of red blood cells. The aim of this work is to characterize the interaction of GO with model and cell membranes and use this knowledge to improve GO hemocompatibility. We have found that GO interacts with both neutral and negatively charged lipid membranes; binding is decreased beyond a certain concentration of negatively charged lipids and favored in high-salt buffers. After this binding occurs, some of the vesicles remain intact, while others are disrupted and spread over the GO surface. Neutral membrane vesicles tend to break down and extend over the GO, while vesicles with negatively charged membranes are mainly bound to the GO without disruption. GO also interacts with red blood cells and causes hemolysis; hemolysis is decreased when GO is previously coated with lipid membranes, particularly with pure phosphatidylcholine vesicles.


Assuntos
Grafite/química , Membrana Celular , Bicamadas Lipídicas , Fosfatidilcolinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...