Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Oncol ; 61(2)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35730611

RESUMO

Pancreatic cancer (PC) has one of the highest fatality rates and the currently available therapeutic options are not sufficient to improve its overall poor prognosis. In addition to insufficient effectiveness of anticancer treatments, the lack of clear early symptoms and early metastatic spread maintain the PC survival rates at a low level. Metabolic reprogramming is among the hallmarks of cancer and could be exploited for the diagnosis and treatment of PC. PC is characterized by its heterogeneity and, apart from molecular subtypes, the identification of metabolic subtypes in PC could aid in the development of more individualized therapeutic approaches and may lead to improved clinical outcomes. In addition to the deregulated utilization of glucose in aerobic glycolysis, PC cells can use a wide range of substrates, including branched­chain amino acids, glutamine and lipids to fulfil their energy requirements, as well as biosynthetic needs. The tumor microenvironment in PC supports tumor growth, metastatic spread, treatment resistance and the suppression of the host immune response. Moreover, reciprocal interactions between cancer and stromal cells enhance their metabolic reprogramming. PC stem cells (PCSCs) with an increased resistance and distinct metabolic properties are associated with disease relapses and cancer spread, and represent another significant candidate for therapeutic targeting. The present review discusses the metabolic signatures observed in PC, a disease with a multifaceted and often transient metabolic landscape. In addition, the metabolic pathways utilized by PC cells, as well as stromal cells are discussed, providing examples of how they could present novel targets for therapeutic interventions and elaborating on how interactions between the various cell types affect their metabolism. Furthermore, the importance of PCSCs is discussed, focusing specifically on their metabolic adaptations.


Assuntos
Metabolismo Energético , Neoplasias Pancreáticas , Metabolismo Energético/fisiologia , Glicólise , Humanos , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Prognóstico , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Cell Death Dis ; 10(3): 186, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796197

RESUMO

Although the involvement of type 1 (IP3R1) and type 2 (IP3R2) inositol 1,4,5-trisphosphate receptors in apoptosis induction has been well documented in different cancer cells and tissues, the function of type 3 IP3R (IP3R3) is still elusive. Therefore, in this work we focused on the role of IP3R3 in tumor cells in vitro and in vivo. We determined increased expression of this receptor in clear cell renal cell carcinoma compared to matched unaffected part of the kidney from the same patient. Thus, we hypothesized about different functions of IP3R3 compared to IP3R1 and IP3R2 in tumor cells. Silencing of IP3R1 prevented apoptosis induction in colorectal cancer DLD1 cells, ovarian cancer A2780 cells, and clear cell renal cell carcinoma RCC4 cells, compared to apoptosis in cells treated with scrambled siRNA. As expected, silencing of IP3R3 and subsequent apoptosis induction resulted in increased levels of apoptosis in all these cells. Further, we prepared a DLD1/IP3R3_del cell line using CRISPR/Cas9 gene editing method. These cells were injected into nude mice and tumor's volume was compared with tumors induced by DLD1 cells. Lower volume of tumors originated from DLD1/IP3R3_del cells was observed after 12 days, compared to wild type DLD1 cells. Also, the migration of these cells was lesser compared to wild type DLD1 cells. Apoptosis under hypoxic conditions was more pronounced in DLD1/IP3R3_del cells than in DLD1 cells. These results clearly show that IP3R3 has proliferative and anti-apoptotic effect in tumor cells, on contrary to the pro-apoptotic effect of IP3R1.


Assuntos
Apoptose , Carcinoma de Células Renais/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Neoplasias Renais/metabolismo , Idoso , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...