Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 23(7): 274, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207549

RESUMO

The present study investigates the physicochemical properties and stability of a novel lipid-based formulation-surfactant-enriched oil marbles containing abiraterone acetate. While the biopharmaceutical performance of this formulation has been reported recently, this study aims to fill the gap between a promising in vivo performance and industrial applicability. A series of techniques were employed to assess the solid-state characteristics of oil marble cores along with their physicochemical properties upon stability testing. The chemical stability of abiraterone acetate in the formulation was also investigated. The core of the formulation was found to be stable both physically and chemically over 12 months of storage. The in vitro performance of stressed samples was evaluated using a dissolution experiment. The formulation has successfully self-emulsified upon incubation in bio-relevant media, resulting in a fast and complete API release. An important issue connected with the excipient used as a covering material of oil marbles has been identified. The seemingly insignificant water sorption caused agglomeration of the oil marbles and consequently compromised the dissolution rate in some of the stressed samples. Replacing HPMC with lactose as a covering material resulted in more favorable properties upon storage. Overall, it has been shown that oil marbles are an industrially applicable concept of the solidified lipid-based formulation.


Assuntos
Produtos Biológicos , Excipientes , Acetato de Abiraterona , Carbonato de Cálcio , Química Farmacêutica/métodos , Estabilidade de Medicamentos , Excipientes/química , Lactose , Lipídeos/química , Solubilidade , Tensoativos/química , Água
2.
AAPS J ; 22(6): 122, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978690

RESUMO

Abiraterone acetate has limited bioavailability in the fasted state and exhibits a strong positive food effect. We present a novel formulation concept based on the so-called oil marbles (OMs) and show by in vitro and in vivo experiments that the food effect can be suppressed. OMs are spherical particles with a core-shell structure, formed by coating oil-based droplets that contain the dissolved drug by a layer of powder that prevents the cores from sticking and coalescence. OMs prepared in this work contained abiraterone acetate in the amorphous form and showed enhanced dissolution properties during in vitro experiments when compared with originally marketed formulation of abiraterone acetate (Zytiga®). Based on in vitro comparison of OMs containing different oil/surfactant combinations, the most promising formulation was chosen for in vivo studies. To ensure relevance, it was verified that the food effect previously reported for Zytiga® in humans was translated into the rat animal model. The bioavailability of abiraterone acetate formulated in OMs in the fasted state was then found to be enhanced by a factor of 2.7 in terms of AUC and by a factor of 4.0 in terms of Cmax. Crucially, the food effect reported in the literature for other abiraterone acetate formulations was successfully eliminated and OMs showed comparable extent of bioavailability in a fed-fasted study. Oil marbles therefore seem to be a promising formulation concept not only for abiraterone acetate but potentially also for other poorly soluble drugs that reveal a positive food effect.


Assuntos
Acetato de Abiraterona/farmacocinética , Composição de Medicamentos/métodos , Veículos Farmacêuticos/química , Acetato de Abiraterona/administração & dosagem , Acetato de Abiraterona/química , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Liberação Controlada de Fármacos , Jejum/fisiologia , Interações Alimento-Droga , Masculino , Modelos Animais , Óleos/química , Período Pós-Prandial/fisiologia , Ratos , Tensoativos/química
3.
Eur J Pharm Biopharm ; 151: 81-90, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32298757

RESUMO

Abiraterone acetate is a potent drug used for the treatment of metastatic castration resistant prostate cancer. However, currently marketed product containing crystalline abiraterone acetate exhibits strong positive food effect which results in strict dosing regimen. In the present work, a rational approach towards design of novel abiraterone acetate formulations that would allow increased bioavailability on a fasting stomach and thus decreased food effect is presented. Precipitation experiments in biorelevant media were designed to assess pH induced precipitation of the drug and a pool of polymeric excipients was then screened for their potential to inhibit precipitation. The best performing polymeric excipients were subsequently used as carriers for the preparation of amorphous solid dispersions. Two main approaches were followed in order to formulate the drug. The first approach relies on the suppression of precipitation from a supersaturated solution whereas the second one is based on the hypothesis that when the release of the drug is tuned, optimal uptake of the drug can be reached. Optimized formulation prototypes were tested in a rat animal model in an incomplete block, randomized bioequivalence study to assess their relative bioavailability under fasting conditions. We show that both formulation approaches lead to increased bioavailability of abiraterone acetate on a fasting stomach with bioavailability in rats being enhanced up to 250% compared to the original drug product containing crystalline drug.


Assuntos
Acetato de Abiraterona/metabolismo , Acetato de Abiraterona/química , Animais , Disponibilidade Biológica , Avaliação Pré-Clínica de Medicamentos , Liberação Controlada de Fármacos/fisiologia , Excipientes/química , Jejum/metabolismo , Interações Alimento-Droga/fisiologia , Concentração de Íons de Hidrogênio , Masculino , Polímeros/química , Ratos , Ratos Wistar , Equivalência Terapêutica
4.
Int J Nanomedicine ; 11: 3801-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27540292

RESUMO

INTRODUCTION: Magnetic nanoparticles (NPs) represent a tool for use in magnetic resonance imaging (MRI)-guided thermoablation of tumors using an external high-frequency (HF) magnetic field. To avoid local overheating, perovskite NPs with a lower Curie temperature (T c) were proposed for use in thermotherapy. However, deposited power decreases when approaching the Curie temperature and consequently may not be sufficient for effective ablation. The goal of the study was to test this hypothesis. METHODS: Perovskite NPs (T c =66°C-74°C) were characterized and tested both in vitro and in vivo. In vitro, the cells suspended with NPs were exposed to a HF magnetic field together with control samples. In vivo, a NP suspension was injected into a induced tumor in rats. Distribution was checked by MRI and the rats were exposed to a HF field together with control animals. Apoptosis in the tissue was evaluated. RESULTS AND DISCUSSION: In vitro, the high concentration of suspended NPs caused an increase of the temperature in the cell sample, leading to cell death. In vivo, MRI confirmed distribution of the NPs in the tumor. The temperature in the tumor with injected NPs did not increase substantially in comparison with animals without particles during HF exposure. We proved that the deposited power from the NPs is too small and that thermoregulation of the animal is sufficient to conduct the heat away. Histology did not detect substantially higher apoptosis in NP-treated animals after ablation. CONCLUSION: Magnetic particles with low T c can be tracked in vivo by MRI and heated by a HF field. The particles are capable of inducing cell apoptosis in suspensions in vitro at high concentrations only. However, their effect in the case of extracellular deposition in vivo is questionable due to low deposited power and active thermoregulation of the tissue.


Assuntos
Técnicas de Ablação/métodos , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Nanopartículas , Técnicas de Ablação/instrumentação , Animais , Compostos de Cálcio/química , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/farmacocinética , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/instrumentação , Imãs , Nanopartículas/química , Óxidos/química , Ratos Wistar , Dióxido de Silício/química , Suspensões , Temperatura , Titânio/química , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nanotoxicology ; 10(6): 662-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26581309

RESUMO

Nanomaterials are currently the subject of intense research due to their wide variety of potential applications in the biomedical, optical and electronic fields. We prepared and tested cobalt zinc ferrite nanoparticles (Co0.5Zn0.5Fe2O4+γ [CZF-NPs]) encapsulated by amorphous silica in order to find a safe contrast agent and magnetic label for tracking transplanted cells within an organism using magnetic resonance imaging (MRI). Rat mesenchymal stem cells (rMSCs) were labeled for 48 h with a low, medium or high dose of CZF-NPs (0.05; 0.11 or 0.55 mM); silica NPs (Si-NPs; 0.11 mM) served as a positive control. The internalization of NPs into cells was verified by transmission electron microscopy. Biological effects were analyzed at the end of exposure and after an additional 72 h of cell growth without NPs. Compared to untreated cells, Annexin V/Propidium Iodide labeling revealed no significant cytotoxicity for any group of treated cells and only a high dose of CZF-NPs slowed down cell proliferation and induced DNA damage, manifested as a significant increase of DNA-strand breaks and oxidized DNA bases. This was accompanied by high concentrations of 15-F2t-isoprostane and carbonyl groups, demonstrating oxidative injury to lipids and proteins, respectively. No harmful effects were detected in cells exposed to the low dose of CZF-NPs. Nevertheless, the labeled cells still exhibited an adequate relaxation rate for MRI in repeated experiments and ICP-MS confirmed sufficient magnetic label concentrations inside the cells. The results suggest that the silica-coated CZF-NPs, when applied at a non-toxic dose, represent a promising contrast agent for cell labeling.


Assuntos
Meios de Contraste/toxicidade , Dano ao DNA , Metabolismo dos Lipídeos/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas/toxicidade , Carbonilação Proteica/efeitos dos fármacos , Dióxido de Silício/toxicidade , Animais , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cobalto/química , Cobalto/toxicidade , Meios de Contraste/química , Dinoprosta/análogos & derivados , Relação Dose-Resposta a Droga , Compostos Férricos/química , Compostos Férricos/toxicidade , Isoprostanos/metabolismo , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Ratos , Dióxido de Silício/química , Coloração e Rotulagem , Propriedades de Superfície , Compostos de Zinco/química , Compostos de Zinco/toxicidade
6.
Analyst ; 138(1): 333-8, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23133826

RESUMO

Herein we present a supramolecular non-covalent approach for the modification of gold nanoparticles (GNPs) and silver nanoparticles (SNPs) with porphyrin derivatives. The immobilization of porphyrin derivatives was carried out by two different procedures of ionic interaction. The first one was direct immobilization of the conjugate on nanoparticles and the second one was immobilization of the conjugate on 3-mercaptopropanoic acid (MPA) premodified gold nanoparticles. Such modified nanoparticles were used for interactions with selected oxoanions. The interactions were studied by UV-Vis absorption spectroscopy and electronic circular dichroism. The results showed a dependence of interaction with oxoanions on the immobilization procedures of porphyrin derivatives on the nanoparticle surface.

7.
Nanoscale Res Lett ; 7(1): 287, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22655978

RESUMO

In this work, a simple method for alcohol synthesis with high enantiomeric purity was proposed. For this, colloidal gold and silver surface modifications with 3-mercaptopropanoic acid and cysteamine were used to generate carboxyl and amine functionalized gold and silver nanoparticles of 15 and 45 nm, respectively. Alcohol dehydrogenase from Thermoanaerobium brockii (TbADH) and its cofactor (NADPH) were physical and covalent (through direct adsorption and using cross-linker) immobilized on nanoparticles' surface. In contrast to the physical and covalent immobilizations that led to a loss of 90% of the initial enzyme activity and 98% immobilization, the use of a cross-linker in immobilization process promoted a loss to 30% of the initial enzyme activity and >92% immobilization. The yield of NADPH immobilization was about 80%. The best results in terms of activity were obtained with Ag-citr nanoparticle functionalized with carboxyl groups (Ag-COOH), Au-COOH(CTAB), and Au-citr functionalized with amine groups and stabilized with CTAB (Au-NH2(CTAB)) nanoparticles treated with 0.7% and 1.0% glutaraldehyde. Enzyme conformation upon immobilization was studied using fluorescence and circular dichroism spectroscopies. Shift in ellipticity at 222 nm with about 4 to 7 nm and significant decreasing in fluorescence emission for all bioconjugates were observed by binding of TbADH to silver/gold nanoparticles. Emission redshifting of 5 nm only for Ag-COOH-TbADH bioconjugate demonstrated change in the microenvironment of TbADH. Enzyme immobilization on glutaraldehyde-treated Au-NH2(CTAB) nanoparticles promotes an additional stabilization preserving about 50% of enzyme activity after 15 days storage. Nanoparticles attached-TbADH-NADPH systems were used for enantioselective (ee > 99%) synthesis of (S)-7-hydroxy-2-tetralol.

8.
J Sep Sci ; 35(1): 73-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22125201

RESUMO

In this study, bare gold nanoparticles (GNPs) immobilized in the sol-gel-pretreated fused-silica (FS) capillary as a stationary phase for open-tubular capillary electrochromatography (OT-CEC) are for the first time shown to be able to separate both hydrophobic polyaromatic hydrocarbons (PAHs) as well as hydrophilic cationic antimicrobial peptides. Model mixture of four PAHs, naphthalene, fluorene, phenanthrene, and anthracene, was resolved by OT-CEC in the GNP-modified FS capillaries using the hydro-organic background electrolyte (BGE) composed of 20 mmol/L sodium phosphate buffer, pH 7, modified with ACN at 8:2 v/v ratio. On the other hand, three synthetic analogues of an antimicrobial peptide mastoparan PDD-B, basic tetradecapeptides INWKKLGKKILGAL-NH(2), INSLKLGKKILGAL-NH(2) and NWLRLGRRILGAL-NH(2), were separated in aqueous acidic BGEs, pH 2.1-3.1, composed of weak acids (formic and acetic) or amphoteric amino or imino acids (aspartic or iminodiacetic), utilizing the advantage of a slow reversed (anodic) EOF and slightly positive charge of the GNP-modified FS capillary suppressing the adsorption of cationic peptides on the inner capillary wall and improving their resolution.


Assuntos
Eletrocromatografia Capilar/métodos , Hidrocarbonetos Aromáticos/isolamento & purificação , Nanopartículas/química , Peptídeos/isolamento & purificação , Adsorção , Eletrocromatografia Capilar/instrumentação , Ouro/química , Hidrocarbonetos Aromáticos/química , Peptídeos/química
9.
Nanoscale Res Lett ; 6(1): 366, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21711893

RESUMO

This study deals with preparation of substrates suitable for surface-enhanced Raman spectroscopy (SERS) applications by sputtering deposition of gold layer on the polytetrafluorethylene (PTFE) foil. Time of sputtering was investigated with respect to the surface properties. The ability of PTFE-Au substrates to enhance Raman signals was investigated by immobilization of biphenyl-4,4'-dithiol (BFD) from the solutions with various concentrations. BFD was also used for preparation of sandwich structures with Au or Ag nanoparticles by two different procedures. Results showed that PTFE can be used for fabrication of SERS active substrate with easy handle properties at low cost. This substrate was sufficient for the measurement of SERS spectrum of BFD even at 10-8 mol/l concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...