Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Curr Microbiol ; 46(1): 6-10, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12432456

RESUMO

The ecophysiological variabilities in the ectohydrolytic enzyme profiles of the three species of Pseudoalteromonas, P. citrea, P. issachenkonii, and P. nigrifaciens, have been investigated. Forty-one bacteria isolated from several invertebrates, macroalgae, sea grass, and the surrounding water exhibited different patterns of hydrolytic enzyme activities measured as the hydrolysis of either native biopolymers or fluorogenic substrates. The activities of the following enzymes were assayed: proteinase, tyrosinase, lipase, amylase, chitinase, agarase, fucoidan hydrolase, laminaranase, alginase, pustulanase, cellulase, beta-glucosidase, alpha- and beta-galactosidases, beta-N-acetylglucosaminidase, beta-glucosaminidase, beta-xylosidase, and alpha-mannosidase. The occurrence and cell-specific activities of all enzymes varied over a broad range (from 0 to 44 micromol EU per hour) and depended not only on taxonomic affiliation of the strain, but also on the source/place of its isolation. This suggests 'specialization' of different species for different types of polymeric substrates as, for example, all strains of P. citrea and P. issachenkonii hydrolyzed alginate and laminaran, while strains of P. nigrifaciens were lacking the ability to hydrolyze most of the algal polysaccharides. The incidence of certain enzymes such as fucoidan hydrolases, alginate lyases, agarases, and alpha-galactosidases might be strain specific and reflect its particular ecological habitat.


Assuntos
Ecossistema , Pseudoalteromonas/enzimologia , Meios de Cultura , Hidrolases/metabolismo , Pseudoalteromonas/classificação , Pseudoalteromonas/isolamento & purificação , Água do Mar
2.
Lett Appl Microbiol ; 35(4): 343-6, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12358700

RESUMO

AIMS: The present work aimed to design an optimized medium to yield a higher production of glycosides by Pseudoalteromonas issachenkonii KMM 3549(T). METHODS AND RESULTS: Higher levels of fucoidan hydrolase, alginase, laminaranase and b-N-acetylglucosaminidase production were obtained with peptone concentrations ranging from 2.5 g l(-1) to 10 g l(-1), while the presence of both yeast extract and glucose did not affect enzyme production. The activity of fucoidan hydrolase and laminaranase increased up to 4.83 microM h(-1) mg(-1) and 19.23 microM h(-1) mg(-1) protein, respectively, in growth media containing xylose (1.0 g l(-1)), laminarin (0.5 g l(-1)) or alginate (0.5 g l(-1)), and production of b-N-acetylglucosaminidase substantially increased in the presence of fucoidan (0.5 g l(-1)) or galactose (1 g l(-1)). All polysaccharides tested in concentrations of 0.5 g l(-1) fucoidan and 0.2 g l(-1) fucose induced production of alginase (up to 5.06 microM h(-1) mg-1 protein). CONCLUSIONS: The production of glycosidases is not only stimulated by the presence of algal polysaccharides, but may also be stimulated by monosaccharides (e.g. xylose). SIGNIFICANCE AND IMPACT OF THE STUDY: The production of glycosidases by Pseudoalteromonas issachenkonii KMM 3549(T) was significantly improved by using a simple nutrient medium containing peptone (2.5 g l(-1)) and xylose (5.0 g l(-1)) in 100% natural seawater.


Assuntos
Glicosídeo Hidrolases/biossíntese , Polissacarídeo-Liases , Polissacarídeos/metabolismo , Pseudoalteromonas/enzimologia , Xilose/metabolismo , Meios de Cultura , Glucana Endo-1,3-beta-D-Glucosidase , Pseudoalteromonas/crescimento & desenvolvimento , Xilose/administração & dosagem
3.
Microb Ecol ; 43(2): 242-9, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12023731

RESUMO

The heterotrophic microbial enrichment community established during degradation of brown algae Fucus evanescens was characterized. A two-species bacterial community of marine culturable gamma-proteobacteria consisted of Pseudoalteromonas and Halomonas. The first member of the community, Pseudoalteromonas sp., was highly metabolically active, had bacteriolytic and hemolytic activities, produced proteinases (gelatinase and caseinase), lipases, DNases, and fucoidanhydrolases, laminaranases, alginases, pustulanases, beta-glucosidases, beta-galactosidases, beta-N-acetylglucosaminidases, and beta-xylosidases. The second member of the community, Halomonas marina, produced only caseinase and DNase, and it did not hydrolyze algal polysaccharides. Both members of the studied bacterial community utilized a range of easily assimilable monosaccharides and other low molecular weight organic substances. The results provide an evidence of the complex metabolic interrelations between two members of this culturable community. One of them Pseudoalteromonas sp., most likely plays the major role in the initial stages of algal degradation; the other one, H. marina, resistant to the bacteriolytic activity of the former, is able to utilize the products of degradation of polysaccharides.


Assuntos
Halomonas/isolamento & purificação , Phaeophyceae/metabolismo , Proteobactérias/isolamento & purificação , Biodegradação Ambiental , Halomonas/fisiologia , Peso Molecular , Compostos Orgânicos/metabolismo , Polissacarídeos/metabolismo , Dinâmica Populacional , Proteobactérias/fisiologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...