Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(36): e2302550, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939279

RESUMO

Resonant absorption of a photon by bound electrons in a solid can promote an electron to another orbital state or transfer it to a neighboring atomic site. Such a transition in a magnetically ordered material could affect the magnetic order. While this process is an obvious road map for optical control of magnetization, experimental demonstration of such a process remains challenging. Exciting a significant fraction of magnetic ions requires a very intense incoming light beam, as orbital resonances are often weak compared to above-band-gap excitations. In the latter case, a sizeable reduction of the magnetization occurs as the absorbed energy increases the spin temperature, masking the non-thermal optical effects. Here, using ultrafast X-ray spectroscopy, this work is able to resolve changes in the magnetization state induced by resonant absorption of infrared photons in Co-doped yttrium iron garnet, with negligible thermal effects. This work finds that the optical excitation of the Co ions affects the two distinct magnetic Fe sublattices differently, resulting in a transient non-collinear magnetic state. The present results indicate that the all-optical magnetization switching (AOS) most likely occurs due to the creation of a transient, non-collinear magnetic state followed by coherent spin rotations of the Fe moments.

2.
Phys Chem Chem Phys ; 25(33): 22380-22387, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37581207

RESUMO

Multiferroic oxides are considered as key elements of energy-consuming devices required for the development of scalable logic and information storage technologies. In this regard, understanding the mechanisms of magnetoelectric switching and finding the optimal way to switch magnetization by an electric field is of crucial importance. In this study, we develop a model for studying magnetic states in a nanoscale exchange-coupled ferromagnetic-multiferroic heterostructure subjected to the action of an electric field. Based on bias effects emerging due to the coupling between a ferromagnetic subsystem and an antiferromagnetically ordered multiferroic material, we explore the magnetic textures and the magnetization reversal processes in a ferromagnet. As the multiferroic material, we consider BiFeO3, where magnetic ordering and ferroelectric ordering are determined by the mutually perpendicular antiferromagnetic (L), weak ferromagnetic (M) and polarization (P) vectors. Application of an electric voltage removes degeneration from eight energetically equivalent positions of P|| 〈111〉, allocates the definite directions of vectors P, M, and L and as a consequence the unidirectional magnetic anisotropy axis in the reference ferromagnetic layer. Our study reveals the features of the magnetic configurations in systems of different geometries, with varying exchange and magnetic anisotropy, necessary to determine the optimal conditions for switching magnetic states in a multiferroic bi-layer by an electric field.

3.
Materials (Basel) ; 15(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35057292

RESUMO

In this article, we performed symmetry analysis of perovskite-based multiferroics: bismuth ferrite (BiFeO3)-like, orthochromites (RCrO3), and Ruddlesden-Popper perovskites (Ca3Mn2O7-like), being the typical representatives of multiferroics of the trigonal, orthorhombic, and tetragonal crystal families, and we explored the effect of crystallographic distortions on magnetoelectric properties. We determined the principal order parameters for each of the considered structures and obtained their invariant combinations consistent with the particular symmetry. This approach allowed us to analyze the features of the magnetoelectric effect observed during structural phase transitions in BixR1-xFeO3 compounds and to show that the rare-earth sublattice has an impact on the linear magnetoelectric effect allowed by the symmetry of the new structure. It was shown that the magnetoelectric properties of orthochromites are attributed to the couplings between the magnetic and electric dipole moments arising near Cr3+ ions due to distortions linked with rotations and deformations of the CrO6 octahedra. For the first time, such a symmetry consideration was implemented in the analysis of the Ruddlesden-Popper structures, which demonstrates the possibility of realizing the magnetoelectric effect in the Ruddlesden-Popper phases containing magnetically active cations, and allows the estimation of the conditions required for its optimization.

4.
Science ; 374(6575): 1608-1611, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941422

RESUMO

Understanding spin-lattice coupling represents a key challenge in modern condensed matter physics, with crucial importance and implications for ultrafast and two-dimensional magnetism. The efficiency of angular momentum and energy transfer between spins and the lattice imposes fundamental speed limits on the ability to control spins in spintronics, magnonics, and magnetic data storage. We report on an efficient nonlinear mechanism of spin-lattice coupling driven by terahertz light pulses. A nearly single-cycle terahertz pulse resonantly interacts with a coherent magnonic state in the antiferromagnet cobalt difluoride (CoF2) and excites the Raman-active terahertz phonon. The results reveal the distinctive functionality of antiferromagnets that allows ultrafast spin-lattice coupling using light.

5.
Sci Rep ; 8(1): 11435, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061684

RESUMO

Optical impact on the spin system in a magnetically ordered medium provides a unique possibility for local manipulation of magnetization at subpicosecond time scales. One of the mechanisms of the optical manipulation is related to the inverse Faraday effect (IFE). Usually the IFE is observed in crystals and magnetic films on a substrate. Here we demonstrate the IFE induced by fs-laser pulses in the magnetic film inside the magnetophotonic microcavity. Spectral dependence of the IFE on the laser pulse wavelength in the band gap of the magnetophotonic microcavity has a sharp peak leading to a significant enhancement of the IFE. This phenomenon is explained by strong confinement of the electromagnetic energy within the magnetic film. Calculated near field distribution of the IFE effective magnetic field indicates its subwavelength localization within 30 nm along the film thickness. These excited volumes can be shifted along the sample depth via e.g. changing frequency of the laser pulses. The obtained results open a way for ultrafast optical control of magnetization at subwavelength scales.

6.
Sci Rep ; 7(1): 264, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325906

RESUMO

Nowadays, spintronics considers magnetic domain walls as a kind of nanodeviсe that demands for switching much less energy in comparison to homogeneous process. We propose and demonstrate a new concept for the light control via electric field applied locally to a magnetic domain wall playing the role of nanodevice. In detail, we charged a 15-µm-thick metallic tip to generate strong non-uniform electric field in the vicinity of the domain wall in the iron garnet film. The electric field influences the domain wall due to flexomagnetoelectric effect and causes the domain wall shift. The resulting displacement of the domain wall is up to 1/3 of domain width and allows to demonstrate a novel type of the electrically controlled magneto-optical shutter. Polarized laser beam focused on the electric-field-driven domain wall was used to demonstrate the concept of a microscale Faraday modulator. We obtained different regimes of the light modulation - linear, nonlinear and tri-stable - for the same domain wall with corresponding controllable displacement features. Such variability to control of domain wall's displacement with spatial scale of about 10 µm makes the proposed concept very promising for nanophotonics and spintronics.

7.
Opt Express ; 17(22): 19519-35, 2009 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19997172

RESUMO

Bismuth-substituted iron garnets are considered to be the most promising magneto-optical materials because of their excellent optical transparency and very high magneto-optical figures of merit in the near-infrared spectral region. However, the practical application of garnets in the visible and short-wavelength infrared parts of spectrum is currently limited, due to their very high optical absorption (especially in sputtered films) in these spectral regions. In this paper, we identify the likely source of excess absorption observed in sputtered garnet films in comparison with epitaxial layers and demonstrate (Bi,Dy)(3)(Fe,Ga)(5)O(12): Bi(2)O(3) composites possessing record MO quality in the visible region.


Assuntos
Bismuto/química , Compostos Férricos/química , Manufaturas , Bismuto/efeitos da radiação , Compostos Férricos/efeitos da radiação , Temperatura Alta , Luz , Magnetismo , Ondas de Rádio , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...