Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(9)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37763893

RESUMO

With the increasing processing power of micro-electronic components and increasing spatial limitations, ensuring sufficient heat dissipation has become a crucial task. This work presents a microscopic approach to increasing the surface area through periodic surface structures. Microstructures with a periodic distance of 8.5 µm are fabricated via Direct Laser Interference Patterning (DLIP) on stainless steel plates with a nanosecond-pulsed infrared laser and are characterized by their developed interfacial area ratio. The optimal structuring parameters for increasing the surface area were investigated, reaching peak-to-valley depths up to 12.8 µm and increasing surface area by up to 394%. Heat dissipation in a natural convection environment was estimated by measuring the output voltage of a Peltier element mounted between a hot plate and a textured sample. The resulting increase in output voltage compared to an unstructured sample was correlated to the structure depth and developed interfacial area ratio, finding a maximum increase of 51.4%. Moreover, it was shown that the output voltage correlated well with the structure depth and surface area.

2.
Sci Rep ; 9(1): 6721, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040334

RESUMO

Textured implant surfaces with micrometer and sub-micrometer features can improve contact properties like cell adhesion and bacteria repellency. A critical point of these surfaces is their mechanical stability during implantation. Therefore, strategies capable to provide both biocompatibility for an improved implant healing and resistance to wear for protecting the functional surface are required. In this work, laser-based fabrication methods have been used to produce hierarchical patterns on titanium surfaces. Using Direct Laser Writing with a nanosecond pulsed laser, crater-like structures with a separation distance of 50 µm are produced on unpolished titanium surfaces. Directly on this texture, a hole-like pattern with 5 µm spatial period is generated using Direct Laser Interference Patterning with picosecond pulses. While the smaller features should reduce the bacterial adhesion, the larger geometry was designed to protect the smaller features from wear. On the multifunctional surface, the adherence of E. Coli bacteria is reduced by 30% compared to the untreated reference. In addition, wear test performed on the multiple-scale patterns demonstrated the possibility to protect the smaller features by the larger craters. Also, the influence of the laser treatment on the growth of a titanium oxide layer was evaluated using Energy Dispersive X-Ray Spectroscopy analysis.

3.
In Vivo ; 31(5): 849-854, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28882950

RESUMO

In an effort to generate titanium surfaces for implants with improved osseointegration, we used direct laser interference patterning (DLIP) to modify the surface of pure titanium grade 4 of four different structures. We assessed in vitro cytoxicity and cell attachment, as well as the viability and proliferation of cells cultured directly on the surfaces. Attachment of the cells to the modified surfaces was comparably good compared to that of cells on grit-blasted and acid-etched reference titanium surfaces. In concordance with this, viability and proliferation of the cells directly cultured on the specimens were similar on all the titanium surfaces, regardless of the laser modification, indicating good cytocompatibility.


Assuntos
Lasers , Teste de Materiais , Próteses e Implantes , Propriedades de Superfície , Titânio , Animais , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Titânio/química
4.
Adv Healthc Mater ; 6(3)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27930868

RESUMO

Direct laser interference patterning (DLIP) is used to produce periodic line-like patterns on titanium surfaces. An Nd:YAG laser operating at 532 nm wavelength with a pulse duration of 8 ns is used for the laser patterning process. The generated periodic patterns with spatial periods of 5, 10, and 20 µm are produced with energy densities between 0.44 and 2.6 J cm-2 with a single laser pulse. With variation of energy density, different shapes of the arising topography are observed due to the development of the solidification front of the molten material at the maxima positions. Characterization of the surface chemistry shows that the DLIP treatment enhances the content of nitrogen of the titanium reactive layer from 3.9% up to 23.4%. The structural analysis near the titanium surface shows no changes in microstructure after the laser treatment. Contact angles between 65° and 79° are measured on both structured and turned reference surfaces. Cell viability of human osteoblasts on line-like patterned surfaces after 7 d in cultivation medium is 16% higher compared to the grit-blasted and acid-etched references. Finally, the possibility of patterning complex 3D dental implants is shown.


Assuntos
Implantes Dentários , Lasers , Teste de Materiais , Osteoblastos/metabolismo , Titânio/química , Linhagem Celular , Humanos , Osteoblastos/citologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...