Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36771351

RESUMO

The age-related loss of the cognitive function is a growing concern for global populations. Many factors that determine cognitive resilience or dementia also have metabolic functions. However, this duality is not universally appreciated when the action of that factor occurs in tissues external to the brain. Thus, we examined a set of genes involved in dementia, i.e., those related to vascular dementia, Alzheimer's disease, Parkinson's disease, and the human metabolism for activity in 12 metabolically active tissues. Mining the Genotype-Tissue Expression (GTEx) data showed that most of these metabolism-dementia (MD) genes (62 of 93, 67%) exhibit a higher median expression in any of the metabolically active tissues than in the brain. After identifying that several MD genes served as blood-based biomarkers of longevity in other studies, we examined the impact of the intake of food, nutrients, and other dietary factors on the expression of MD genes in whole blood in the Framingham Offspring Study (n = 2134). We observed positive correlations between flavonoids and HMOX1, taurine and UQCRC1, broccoli and SLC10A2, and myricetin and SLC9A8 (p < 2.09 × 10-4). In contrast, dairy protein, palmitic acid, and pie were negatively correlated, respectively, with the expression of IGF1R, CSF1R, and SLC9A8, among others (p < 2.92 × 10-4). The results of this investigation underscore the potential contributions of metabolic enzyme activity in non-brain tissues to the risk of dementia. Specific epidemiological or intervention studies could be designed using specific foods and nutrients or even dietary patterns focused on these foods and nutrients that influence the expression of some MD genes to verify the findings presented here.


Assuntos
Doença de Alzheimer , Demência Vascular , Humanos , Dieta , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Encéfalo , Cognição/fisiologia
2.
J Vis Exp ; (190)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36622012

RESUMO

Glucan phosphatases belong to the larger family of dual specificity phosphatases (DSP) that dephosphorylate glucan substrates, such as glycogen in animals and starch in plants. The crystal structures of glucan phosphatase with model glucan substrates reveal distinct glucan-binding interfaces made of DSP and carbohydrate-binding domains. However, quantitative measurements of glucan-glucan phosphatase interactions with physiologically relevant substrates are fundamental to the biological understanding of the glucan phosphatase family of enzymes and the regulation of energy metabolism. This manuscript reports a Concanavalin A (ConA)-based in vitro sedimentation assay designed to detect the substrate binding affinity of glucan phosphatases against different glucan substrates. As a proof of concept, the dissociation constant (KD) of glucan phosphatase Arabidopsis thaliana Starch Excess4 (SEX4) and amylopectin was determined. The characterization of SEX4 mutants and other members of the glucan phosphatase family of enzymes further demonstrates the utility of this assay to assess the differential binding of protein- carbohydrate interactions. These data demonstrate the suitability of this assay to characterize a wide range of starch and glycogen interacting proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Glucanos/química , Glucanos/metabolismo , Concanavalina A , Proteínas de Arabidopsis/metabolismo , Amido/química , Glicogênio/metabolismo , Arabidopsis/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/química , Fosfatases de Especificidade Dupla/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...