Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(1): 013505, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725563

RESUMO

Magnetic field aligned filaments such as blobs and edge localized mode filaments carry significant amounts of heat and particles to the plasma facing components and they decrease their lifetime. The dynamics of these filaments determine at least a part of the heat and particle loads. These dynamics can be characterized by their translation and rotation. In this paper, we present an analysis method novel for fusion plasmas, which can estimate the angular velocity of the filaments on frame-by-frame time resolution. After pre-processing, the frames are two-dimensional (2D) Fourier-transformed, then the resulting 2D Fourier magnitude spectra are transformed to log-polar coordinates, and finally the 2D cross-correlation coefficient function (CCCF) is calculated between the consecutive frames. The displacement of the CCCF's peak along the angular coordinate estimates the angle of rotation of the most intense structure in the frame. The proposed angular velocity estimation method is tested and validated for its accuracy and robustness by applying it to rotating Gaussian-structures. The method is also applied to gas-puff imaging measurements of filaments in National Spherical Torus Experiment plasmas.

2.
Rev Sci Instrum ; 92(8): 083508, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470435

RESUMO

Dynamics of fast transient events are challenging to be analyzed with high time resolution. Such events can occur in fusion plasmas such as the filaments during edge-localized modes (ELMs). In this paper, we present a robust method-the spatial displacement estimation-for estimating the displacements of structures with fast dynamics from high spatial and time resolution imaging diagnostics [e.g., gas-puff imaging (GPI)] with sampling time temporal resolution. First, a background suppression method is shown, which suppresses the slowly time-evolving and spatially non-uniform background in the signal. In the second step, a two-dimensional polynomial trend subtraction method is presented to tackle the remaining polynomial order trend in the signal. After performing these pre-processing steps, the spatial displacement of the propagating structure is estimated from the two-dimensional spatial cross-correlation coefficient function calculated between consecutive frames. The method is tested for its robustness and accuracy by simulated Gaussian events and spatially displaced random noise. An example application of the method is presented on propagating ELM filaments measured by the GPI system on the National Spherical Torus Experiment spherical tokamak.

3.
Rev Sci Instrum ; 88(4): 041101, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456269

RESUMO

Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past ∼15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common features are observed. Several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.

4.
Rev Sci Instrum ; 87(2): 023502, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931844

RESUMO

Recent analysis of Gas Puff Imaging (GPI) data from Alcator C-Mod found blob velocities with a modified tracking time delay estimation (TDE). These results disagree with velocity analysis performed using direct Fourier methods. In this paper, the two analysis methods are compared. The implementations of these methods are explained, and direct comparisons using the same GPI data sets are presented to highlight the discrepancies in measured velocities. In order to understand the discrepancies, we present a code that generates synthetic sequences of images that mimic features of the experimental GPI images, with user-specified input values for structure (blob) size and velocity. This allows quantitative comparison of the TDE and Fourier analysis methods, which reveals their strengths and weaknesses. We found that the methods agree for structures of any size as long as all structures move at the same velocity and disagree when there is significant nonlinear dispersion or when structures appear to move in opposite directions. Direct Fourier methods used to extract poloidal velocities give incorrect results when there is a significant radial velocity component and are subject to the barber pole effect. Tracking TDE techniques give incorrect velocity measurements when there are features moving at significantly different speeds or in different directions within the same field of view. Finally, we discuss the limitations and appropriate use of each of methods and applications to the relationship between blob size and velocity.

5.
Rev Sci Instrum ; 83(7): 073501, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22852689

RESUMO

A scintillator-based energetic ion loss detector has been successfully commissioned on the Alcator C-Mod tokamak. This probe is located just below the outer midplane, where it captures ions of energies up to 2 MeV resulting from ion cyclotron resonance heating. After passing through a collimating aperture, ions impact different regions of the scintillator according to their gyroradius (energy) and pitch angle. The probe geometry and installation location are determined based on modeling of expected lost ions. The resulting probe is compact and resembles a standard plasma facing tile. Four separate fiber optic cables view different regions of the scintillator to provide phase space resolution. Evolving loss levels are measured during ion cyclotron resonance heating, including variation dependent upon individual antennae.

6.
Rev Sci Instrum ; 83(12): 123506, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23277986

RESUMO

Gas puff imaging (GPI) offers a direct and effective diagnostic to measure the edge turbulence structure and velocity in the edge plasma, which closely relates to edge transport and instability in tokamaks. A dual GPI diagnostic system has been installed on the low field side on experimental advanced superconducting tokamak (EAST). The two views are up-down symmetric about the midplane and separated by a toroidal angle of 66.6°. A linear manifold with 16 holes apart by 10 mm is used to form helium gas cloud at the 130×130 mm (radial versus poloidal) objective plane. A fast camera is used to capture the light emission from the image plane with a speed up to 390,804 frames/s with 64×64 pixels and an exposure time of 2.156 µs. The spatial resolution of the system is 2 mm at the objective plane. A total amount of 200 Pa.L helium gas is puffed into the plasma edge for each GPI viewing region for about 250 ms. The new GPI diagnostic has been applied on EAST for the first time during the recent experimental campaign under various plasma conditions, including ohmic, L-mode, and type-I, and type-III ELMy H-modes. Some of these initial experimental results are also presented.

7.
Rev Sci Instrum ; 79(10): 10F124, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044608

RESUMO

A linear array of four small biased electrodes was installed in NSTX in an attempt to control the width of the scrape-off layer by creating a strong local poloidal electric field. The set of electrodes was separated poloidally by a 1 cm gap between electrodes and were located slightly below the midplane of NSTX, 1 cm behind the rf antenna, and oriented so that each electrode is facing approximately normal to the magnetic field. Each electrode can be independently biased to +/-100 V. Present power supplies limit the current on two electrodes to 30 A and the other two to 10 A each. The effect of local biasing was measured with a set of Langmuir probes placed between the electrodes and another set extending radially outward from the electrodes, and also by the gas puff imaging diagnostic located 1 m away along the magnetic field lines intersecting the electrodes. Two fast cameras were also aimed directly at the electrode array. The hardware and controls of the biasing experiment will be presented and the initial effects on local plasma parameters will be discussed.

8.
Rev Sci Instrum ; 50(8): 972-8, 1979 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18699647

RESUMO

An array of vacuum photodiode detectors has been used to monitor discharge equilibrium, stability, and cleanliness in the Macrotor tokamak. These detectors use the photoelectric effect on small tungsten plates to measure UV emission in the band lambda approximately 200-1200 angstroms, and so are sensitive mainly to impurity line radiation in Macrotor. The response of this system to controlled impurity contamination experiments and to disruptions is described. The design, construction, and background problems associated with these detectors are discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...