Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 90(5): 053001, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31153238

RESUMO

The Dynamic Compression Sector (DCS) laser is a 100-J ultraviolet Nd:glass system designed and built by the Laboratory for Laser Energetics for experimental research at the DCS located at the Advanced Photon Source (Argonne National Laboratory). Its purpose is to serve as a shock driver to study materials under extreme dynamic pressures. It was designed to deposit energy within a uniformly illuminated 500-µm spot on target, with additional optics provided to implement spot sizes of 250 and 1000 µm. Designed after larger-scale glass lasers such as OMEGA and the National Ignition Facility, the laser consists of a fiber front end with interferometer-based pulse shaping, a Nd:glass regenerative amplifier, a four-pass rod amplifier, and a 15-cm glass disk amplifier, through which six passes are made in a bowtie geometry. The output is frequency tripled from 1053 to 351 nm by using a pair of type-II phase-matched KDP crystals, with a third to increase conversion bandwidth. The super-Gaussian spot in the far field is achieved with a distributed phase plate and a 1-m aspherical focusing lens. Beam smoothing is achieved by smoothing by spectral dispersion and polarization smoothing, resulting in a root-mean-square variation in intensity on target of ±8.7%.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(2 Pt 2): 025401, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11497643

RESUMO

We present theoretical and experimental evidence that nonionizing prepulses with intensities as low as 10(8)-10(9) W/cm(2) can substantially alter high intensity laser-solid interactions. We show that prepulse-heating and vaporization of the target can lead to a preformed plasma once the vapor is ionized by the rising edge of the high-intensity pulse. Our results indicate that peak prepulse intensity is not the only important parameter to consider in determining preformed plasma thresholds, and that a more comprehensive analysis of the prepulse duration and the target material is required.

3.
Phys Rev Lett ; 87(8): 085004, 2001 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-11497951

RESUMO

We have examined the evolution of cylindrically symmetric blast waves produced by the deposition of femtosecond laser pulses in gas jets. In high- Z gases radiative effects become important. We observe the production of an ionization precursor ahead of the shock front and deceleration parameters below the adiabatic value of 1/2 (for a cylinder), an effect expected when the blast wave loses energy by radiative cooling. Despite significant radiative cooling, the blast waves do not appear to develop thin shell instabilities expected for strongly radiative waves. This is believed to be due to the stabilizing effect of a relatively thick blast wave shell resulting in part from electron thermal conduction effects.

4.
Phys Rev Lett ; 84(12): 2634-7, 2000 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-11017287

RESUMO

Recent experiments on the interaction of intense, ultrafast laser pulses with large van der Waals bonded clusters have shown that these clusters can explode with substantial kinetic energy. By driving explosions in deuterium clusters with a 35 fs laser pulse, we have accelerated ions to sufficient kinetic energy to produce DD nuclear fusion. By diagnosing the fusion yield through measurements of 2.45 MeV fusion neutrons, we have found that the fusion yield from these exploding clusters varies strongly with the cluster size, consistent with acceleration of deuterons via Coulomb explosion forces.

5.
Phys Rev Lett ; 85(17): 3640-3, 2000 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-11030970

RESUMO

Exploiting the energetic interaction of intense femtosecond laser pulses with deuterium clusters, it is possible to create conditions in which nuclear fusion results from explosions of these clusters. We have conducted high-resolution neutron time-of-flight spectroscopy on these plasmas and show that they yield fast bursts of nearly monochromatic fusion neutrons with temporal duration as short as a few hundred picoseconds. Such a short, nearly pointlike source now opens up the unique possibility of using these bright neutron pulses, either as a pump or a probe, to conduct ultrafast studies with neutrons.

6.
Opt Express ; 6(12): 236-42, 2000 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19404356

RESUMO

Light scattering in large noble gas clusters irradiated by intense laser pulses was studied and compared to absorption measurements. The scattering signal shows the presence of a peak, when the pulse width was varied, similar to one previously reported in absorption measurements. The peak of the scattering, however, occurs at a longer pulse width than for absorption. This result disagrees with a simple simulation and may be due to propagation or non-linear effects not included in the model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...