Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(15): 155301, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34678009

RESUMO

We theoretically investigate the ground states and the spectrum of elementary excitations across the superfluid to droplet crystallization transition of an oblate dipolar Bose-Einstein condensate. We systematically identify regimes where spontaneous rotational symmetry breaking leads to the emergence of a supersolid phase with characteristic collective excitations, such as the Higgs amplitude mode. Furthermore, we study the dynamics across the transition and show how these supersolids can be realized with standard protocols in state-of-the-art experiments.

2.
Phys Rev Lett ; 126(19): 193002, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34047619

RESUMO

We observe signatures of radial and angular roton excitations around a droplet crystallization transition in dipolar Bose-Einstein condensates. In situ measurements are used to characterize the density fluctuations near this transition. The static structure factor is extracted and used to identify the radial and angular roton excitations by their characteristic symmetries. These fluctuations peak as a function of the interaction strength indicating the crystallization transition of the system. We compare our observations to a theoretically calculated excitation spectrum allowing us to connect the crystallization mechanism with the softening of the angular roton modes.

3.
Science ; 316(5826): 867-70, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17495165

RESUMO

We used radio-frequency spectroscopy to study pairing in the normal and superfluid phases of a strongly interacting Fermi gas with imbalanced spin populations. At high spin imbalances, the system does not become superfluid even at zero temperature. In this normal phase, full pairing of the minority atoms was observed. Hence, mismatched Fermi surfaces do not prevent pairing but can quench the superfluid state, thus realizing a system of fermion pairs that do not condense even at the lowest temperature.

4.
Phys Rev Lett ; 98(5): 050404, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17358831

RESUMO

We study the expansion of a rotating, superfluid Fermi gas. The presence and absence of vortices in the rotating gas are used to distinguish the superfluid and normal parts of the expanding cloud. We find that the superfluid pairs survive during the expansion until the density decreases below a critical value. Our observation of superfluid flow in the expanding gas at 1/kFa=0 extends the range where fermionic superfluidity has been studied to densities of 1.2x10(11) cm(-3), about an order of magnitude lower than any previous study.

5.
Phys Rev Lett ; 97(3): 030401, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16907486

RESUMO

We have observed phase separation between the superfluid and the normal component in a strongly interacting Fermi gas with imbalanced spin populations. The in situ distribution of the density difference between two trapped spin components is obtained using phase-contrast imaging and 3D image reconstruction. A shell structure is clearly identified where the superfluid region of equal densities is surrounded by a normal gas of unequal densities. The phase transition induces a dramatic change in the density profiles as excess fermions are expelled from the superfluid.

6.
Nature ; 435(7045): 1047-51, 2005 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-15973400

RESUMO

Quantum degenerate Fermi gases provide a remarkable opportunity to study strongly interacting fermions. In contrast to other Fermi systems, such as superconductors, neutron stars or the quark-gluon plasma of the early Universe, these gases have low densities and their interactions can be precisely controlled over an enormous range. Previous experiments with Fermi gases have revealed condensation of fermion pairs. Although these and other studies were consistent with predictions assuming superfluidity, proof of superfluid behaviour has been elusive. Here we report observations of vortex lattices in a strongly interacting, rotating Fermi gas that provide definitive evidence for superfluidity. The interaction and therefore the pairing strength between two 6Li fermions near a Feshbach resonance can be controlled by an external magnetic field. This allows us to explore the crossover from a Bose-Einstein condensate of molecules to a Bardeen-Cooper-Schrieffer superfluid of loosely bound pairs. The crossover is associated with a new form of superfluidity that may provide insights into high-transition-temperature superconductors.

7.
Phys Rev Lett ; 94(18): 180401, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15904346

RESUMO

The dynamics of pair condensate formation in a strongly interacting Fermi gas close to a Feshbach resonance was studied. We employed a phase-shift method in which the delayed response of the many-body system to a modulation of the interaction strength was recorded. The observable was the fraction of condensed molecules in the cloud after a rapid magnetic field ramp across the Feshbach resonance. The measured response time was slow compared to the rapid ramp, which provides final proof that the molecular condensates reflect the presence of fermion pair condensates before the ramp.

8.
Phys Rev Lett ; 93(14): 143001, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15524788

RESUMO

We have observed three Feshbach resonances in collisions between 6Li and 23Na atoms. The resonances were identified as narrow loss features when the magnetic field was varied. The molecular states causing these resonances have been identified, and additional 6Li-23Na resonances are predicted. These resonances will allow the study of degenerate Bose-Fermi mixtures with adjustable interactions and could be used to generate ultracold heteronuclear molecules.

9.
Phys Rev Lett ; 92(12): 120403, 2004 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-15089655

RESUMO

We have observed Bose-Einstein condensation of pairs of fermionic atoms in an ultracold 6Li gas at magnetic fields above a Feshbach resonance, where no stable 6Li2 molecules would exist in vacuum. We accurately determined the position of the resonance to be 822+/-3 G. Molecular Bose-Einstein condensates were detected after a fast magnetic field ramp, which transferred pairs of atoms at close distances into bound molecules. Condensate fractions as high as 80% were obtained. The large condensate fractions are interpreted in terms of preexisting molecules which are quasistable even above the two-body Feshbach resonance due to the presence of the degenerate Fermi gas.

10.
Phys Rev Lett ; 91(16): 160401, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-14611386

RESUMO

We have produced a quantum degenerate 6Li Fermi gas with up to 7 x 10(7) atoms, an improvement by a factor of 50 over all previous experiments with degenerate Fermi gases. This was achieved by sympathetic cooling with bosonic 23Na in the F=2, upper hyperfine ground state. We have also achieved Bose-Einstein condensation of F=2 sodium atoms by direct evaporation.

11.
Science ; 300(5626): 1723-6, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12738872

RESUMO

Radio-frequency techniques were used to study ultracold fermions. We observed the absence of mean-field "clock" shifts, the dominant source of systematic error in current atomic clocks based on bosonic atoms. This absence is a direct consequence of fermionic antisymmetry. Resonance shifts proportional to interaction strengths were observed in a three-level system. However, in the strongly interacting regime, these shifts became very small, reflecting the quantum unitarity limit and many-body effects. This insight into an interacting Fermi gas is relevant for the quest to observe superfluidity in this system.

12.
Phys Rev Lett ; 91(25): 250401, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14754098

RESUMO

We have observed Bose-Einstein condensation of molecules. When a spin mixture of fermionic 6Li atoms was evaporatively cooled in an optical dipole trap near a Feshbach resonance, the atomic gas was converted into 6Li2 molecules. Below 600 nK, a Bose-Einstein condensate of up to 900 000 molecules was identified by the sudden onset of a bimodal density distribution. This condensate realizes the limit of tightly bound fermion pairs in the crossover between BCS superfluidity and Bose-Einstein condensation.

13.
Phys Rev Lett ; 88(16): 160401, 2002 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-11955219

RESUMO

We have produced a macroscopic quantum system in which a 6Li Fermi sea coexists with a large and stable 23Na Bose-Einstein condensate. This was accomplished using interspecies sympathetic cooling of fermionic 6Li in a thermal bath of bosonic 23Na. The system features rapid thermalization and long lifetimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...