Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 91(6): 1119-1134, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35060127

RESUMO

Increasing temperature and thermal variability generate profound selection on populations. Given the fast rate of environmental change, understanding the role of plasticity and genetic adaptation in response to increasing temperatures is critical. This may be especially true for thermal effects on reproductive traits in which thermal fertility limits at high temperatures may be lower than for survival traits. Consequences of changing environments during development on adult phenotypes may be particularly problematic for core traits such as reproduction that begin early in development. Here we examine the consequences of developmental thermal plasticity on subsequent adult reproductive traits and its genetic basis. We used a panel of Drosophila melanogaster (the Drosophila Genetic Reference Panel; DGRP) in which male fertility performance was previously defined as either showing relatively little (status = 'high'-performing lines) or substantial ('low'-performing lines) decline when exposed to increasing developmental temperatures. We used a thermal reaction norm approach to quantify variation in the consequences of developmental thermal plasticity on multiple adult reproductive traits, including sex-specific responses, and to identify candidate genes underlying such variation. Developmental thermal stress impacted the means and thermal reaction norms of all reproductive traits except offspring sex ratio. Mating success declined as temperature increased with no difference between high and low lines, whereas increasing temperature resulted in declines for both male and female fertility and productivity but depended on line status. Fertility and offspring number were positively correlated within and between the sexes across lines, but males were more affected than females. We identified 933 SNPs with significant evolved genetic differentiation between high and low lines. In all, 54 of these lie within genomic windows of overall high differentiation, have significant effects of genotype on the male thermal reaction norm for productivity and are associated with 16 genes enriched for phenotypes affecting reproduction, stress responses and autophagy in Drosophila and other organisms. Our results illustrate considerable plasticity in male thermal limits on several reproductive traits following development at high temperature, and we identify differentiated loci with relevant phenotypic effects that may contribute to this population variation. While our work is on a single population, phenotypic results align with an increasing number of studies demonstrating the potential for stronger selection of thermal stress on reproductive traits, particularly in males. Such large fitness costs may have both short- and long-term consequences for the evolution of populations in response to a warming world.


Assuntos
Drosophila melanogaster , Reprodução , Aclimatação , Animais , Drosophila , Drosophila melanogaster/genética , Feminino , Masculino , Reprodução/genética , Temperatura
2.
Evol Lett ; 4(4): 371-381, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32774885

RESUMO

Theory maintains that when future environment is predictable, parents should adjust the phenotype of their offspring to match the anticipated environment. The plausibility of positive anticipatory parental effects is hotly debated and the experimental evidence for the evolution of such effects is currently lacking. We experimentally investigated the evolution of anticipatory maternal effects in a range of environments that differ drastically in how predictable they are. Populations of the nematode Caenorhabditis remanei, adapted to 20°C, were exposed to a novel temperature (25°C) for 30 generations with either positive or zero correlation between parent and offspring environment. We found that populations evolving in novel environments that were predictable across generations evolved a positive anticipatory maternal effect, because they required maternal exposure to 25°C to achieve maximum reproduction in that temperature. In contrast, populations evolving under zero environmental correlation had lost this anticipatory maternal effect. Similar but weaker patterns were found if instead rate-sensitive population growth was used as a fitness measure. These findings demonstrate that anticipatory parental effects evolve in response to environmental change so that ill-fitting parental effects can be rapidly lost. Evolution of positive anticipatory parental effects can aid population viability in rapidly changing but predictable environments.

3.
Front Genet ; 11: 573, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582294

RESUMO

Thermal tolerance range, based on temperatures that result in incapacitating effects, influences species' distributions and has been used to predict species' response to increasing temperature. Reproductive performance may also be negatively affected at less extreme temperatures, but such sublethal heat-induced sterility has been relatively ignored in studies addressing the potential effects of, and ability of species' to respond to, predicted climate warming. The few studies examining the link between increased temperature and reproductive performance typically focus on adults, although effects can vary between life history stages. Here we assessed how sublethal heat stress during development impacted subsequent adult fertility and its plasticity, both of which can provide the raw material for evolutionary responses to increased temperature. We quantified phenotypic and genetic variation in fertility of Drosophila melanogaster reared at standardized densities in three temperatures (25, 27, and 29°C) from a set of lines of the Drosophila Genetic Reference Panel (DGRP). We found little phenotypic variation at the two lower temperatures with more variation at the highest temperature and for plasticity. Males were more affected than females. Despite reasonably large broad-sense heritabilities, a genome-wide association study found little evidence for additive genetic variance and no genetic variants were robustly linked with reproductive performance at specific temperatures or for phenotypic plasticity. We compared results on heat-induced male sterility with other DGRP results on relevant fitness traits measured after abiotic stress and found an association between male susceptibility to sterility and male lifespan reduction following oxidative stress. Our results suggest that sublethal stress during development has profound negative consequences on male adult reproduction, but despite phenotypic variation in a population for this response, there is limited evolutionary potential, either through adaptation to a specific developmental temperature or plasticity in response to developmental heat-induced sterility.

4.
J Evol Biol ; 33(2): 217-224, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31677316

RESUMO

Dispersal often covaries with other traits, and this covariation was shown to have a genetic basis. Here, we wanted to explore to what extent genetic constraints and correlational selection can explain patterns of covariation between dispersal and key life-history traits-lifespan and reproduction. A prediction from the fitness-associated dispersal hypothesis was that lower genetic quality is associated with higher dispersal propensity as driven by the benefits of genetic mixing. We wanted to contrast it with a prediction from a different model that individuals putting more emphasis on current rather than future reproduction disperse more, as they are expected to be more risk-prone and exploratory. However, if dispersal has inherent costs, this will also result in a negative genetic correlation between higher rates of dispersal and some aspects of performance. To explore this issue, we used the dioecious nematode Caenorhabditis remanei and selected for increased and decreased dispersal propensity for 10 generations, followed by five generations of relaxed selection. Dispersal propensity responded to selection, and females from high-dispersal lines dispersed more than females from low-dispersal lines. Females selected for increased dispersal propensity produced fewer offspring and were more likely to die from matricide, which is associated with a low physiological condition in Caenorhabditis nematodes. There was no evidence for differences in age-specific reproductive effort between high- and low-dispersal females. Rather, reproductive output of high-dispersal females was consistently reduced. We argue that our data provide support for the fitness-associated dispersal hypothesis.


Assuntos
Caenorhabditis/fisiologia , Modelos Biológicos , Distribuição Animal/fisiologia , Animais , Comportamento Animal/fisiologia , Caenorhabditis/classificação , Feminino
5.
Evolution ; 71(3): 662-670, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28000915

RESUMO

Reproductive output and cognitive performance decline in parallel during aging, but it is unknown whether this reflects a shared genetic architecture or merely the declining force of natural selection acting independently on both traits. We used experimental evolution in Drosophila melanogaster to test for the presence of genetic variation for slowed cognitive aging, and assess its independence from that responsible for other traits' decline with age. Replicate experimental populations experienced either joint selection on learning and reproduction at old age (Old + Learning), selection on late-life reproduction alone (Old), or a standard two-week culture regime (Young). Within 20 generations, the Old + Learning populations evolved a slower decline in learning with age than both the Old and Young populations, revealing genetic variation for cognitive aging. We found little evidence for a genetic correlation between cognitive and demographic aging: although the Old + Learning populations tended to show higher late-life fecundity than Old populations, they did not live longer. Likewise, selection for late reproduction alone did not result in improved late-life learning. Our results demonstrate that Drosophila harbor genetic variation for cognitive aging that is largely independent from genetic variation for demographic aging and suggest that these two aspects of aging may not necessarily follow the same trajectories.


Assuntos
Evolução Biológica , Envelhecimento Cognitivo , Drosophila melanogaster/fisiologia , Variação Genética , Animais , Drosophila melanogaster/genética , Feminino , Aprendizagem , Masculino , Reprodução
6.
Evolution ; 70(2): 342-57, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787139

RESUMO

The evolution of learning can be constrained by trade-offs. As male and female life histories often diverge, the relationship between learning and fitness may differ between the sexes. However, because sexes share much of their genome, intersexual genetic correlations can prevent males and females from reaching their sex-specific optima resulting in intralocus sexual conflict (IaSC). To investigate if IaSC constraints sex-specific evolution of learning, we selected Caenorhabditis remanei nematode females for increased or decreased olfactory learning performance and measured learning, life span (in mated and virgin worms), reproduction, and locomotory activity in both sexes. Males from downward-selected female lines had higher locomotory activity and longer virgin life span but sired fewer progeny than males from upward-selected female lines. In contrast, we found no effect of selection on female reproduction and downward-selected females showed higher locomotory activity but lived shorter as virgins than upward-selected females. Strikingly, selection on learning performance led to the reversal of sexual dimorphism in virgin life span. We thus show sex-specific trade-offs between learning, reproduction, and life span. Our results support the hypothesis that selection on learning performance can shape the evolution of sexually dimorphic life histories via sex-specific genetic correlations.


Assuntos
Evolução Molecular , Aprendizagem , Seleção Genética , Caracteres Sexuais , Animais , Caenorhabditis/genética , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/fisiologia , Feminino , Locomoção , Longevidade , Masculino , Percepção Olfatória , Reprodução
7.
J Gerontol A Biol Sci Med Sci ; 71(7): 882-90, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26472877

RESUMO

Rapamycin inhibits the nutrient-sensing TOR pathway and extends life span in a wide range of organisms. Although life-span extension usually differs between the sexes, the reason for this is poorly understood. Because TOR influences growth, rapamycin likely affects life-history traits such as growth and reproduction. Sexes have different life-history strategies, and theory predicts that they will resolve the tradeoffs between growth, reproduction, and life span differently. Specifically, in taxa with female-biased sexual size dimorphism, reduced growth may have smaller effects on male fitness. We investigated the effects of juvenile, adult, or life-long rapamycin treatment on growth, reproduction, life span, and individual fitness in the outcrossing nematode Caenorhabditis remanei Life-long exposure to rapamycin always resulted in the strongest response, whereas postreproductive exposure did not affect life span. Although rapamycin resulted in longer life span and smaller size in males, male individual fitness was not affected. In contrast, size and fitness were negatively affected in females, whereas life span was only extended under high rapamycin concentrations. Our results support the hypothesis that rapamycin affects key life-history traits in a sex-specific manner. We argue that the fitness cost of life-span extension will be sex specific and propose that the smaller sex generally pay less while enjoying stronger life-span increase.


Assuntos
Envelhecimento , Caenorhabditis , Longevidade , Desenvolvimento Sexual/efeitos dos fármacos , Sirolimo/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Evolução Biológica , Caenorhabditis/efeitos dos fármacos , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/fisiologia , Imunossupressores/farmacologia , Longevidade/efeitos dos fármacos , Longevidade/fisiologia , Fatores Sexuais
8.
Exp Gerontol ; 48(12): 1469-72, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24120565

RESUMO

Life-history theory maintains that organisms allocate limited resources to different traits to maximize fitness. Learning ability and memory are costly and known to trade-off with longevity in invertebrates. However, since the relationship between longevity and fitness often differs between the sexes, it is likely that sexes will differentially resolve the trade-off between learning and longevity. We used an established associative learning paradigm in the dioecious nematode Caenorhabditis remanei, which is sexually dimorphic for lifespan, to study age-related learning ability in males and females. In particular, we tested the hypothesis that females (the shorter-lived sex) show higher learning ability than males early in life but senesce faster. Indeed, young females outperformed young males in learning a novel association between an odour (butanone) and food (bacteria). However, while learning ability and offspring production declined rapidly with age in females, males maintained high levels of these traits until mid-age. These results not only demonstrate sexual dimorphism in age-related learning ability but also suggest that it conforms to predictions derived from the life-history theory.


Assuntos
Envelhecimento/fisiologia , Comportamento Animal , Caenorhabditis/fisiologia , Cognição , Aprendizagem , Modelos Biológicos , Fatores Etários , Animais , Evolução Biológica , Feminino , Longevidade , Masculino , Modelos Animais , Reprodução , Caracteres Sexuais , Fatores Sexuais , Olfato , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...