Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 500: 81-111, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19399431

RESUMO

We demonstrate how to model macromolecular regulatory networks with JigCell and the Parameter Estimation Toolkit (PET). These software tools are designed specifically to support the process typically used by systems biologists to model complex regulatory circuits. A detailed example illustrates how a model of the cell cycle in frog eggs is created and then refined through comparison of simulation output with experimental data. We show how parameter estimation tools automatically generate rate constants that fit a model to experimental data.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Redes Reguladoras de Genes , Modelos Biológicos , Software , Animais , Ciclo Celular , Xenopus laevis/fisiologia
2.
J Comput Biol ; 12(1): 48-63, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15725733

RESUMO

Parameter values for a kinetic model of the nuclear replication-division cycle in frog eggs are estimated by fitting solutions of the kinetic equations (nonlinear ordinary differential equations) to a suite of experimental observations. A set of optimal parameter values is found by minimizing an objective function defined as the orthogonal distance between the data and the model. The differential equations are solved by LSODAR and the objective function is minimized by ODRPACK. The optimal parameter values are close to the "guesstimates" of the modelers who first studied this problem. These tools are sufficiently general to attack more complicated problems, where guesstimation is impractical or unreliable.


Assuntos
Anuros/fisiologia , Metáfase/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Software , Animais , Biologia Computacional
3.
OMICS ; 7(3): 285-99, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14583117

RESUMO

The life of a cell is governed by the physicochemical properties of a complex network of interacting macromolecules (primarily genes and proteins). Hence, a full scientific understanding of and rational engineering approach to cell physiology require accurate mathematical models of the spatial and temporal dynamics of these macromolecular assemblies, especially the networks involved in integrating signals and regulating cellular responses. The Virginia Tech Consortium is involved in three specific goals of DARPA's computational biology program (Bio-COMP): to create effective software tools for modeling gene-protein-metabolite networks, to employ these tools in creating a new generation of realistic models, and to test and refine these models by well-conceived experimental studies. The special emphasis of this group is to understand the mechanisms of cell cycle control in eukaryotes (yeast cells and frog eggs). The software tools developed at Virginia Tech are designed to meet general requirements of modeling regulatory networks and are collected in a problem-solving environment called JigCell.


Assuntos
Fenômenos Fisiológicos Celulares , Biologia Computacional/métodos , Modelos Biológicos , Software , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Simulação por Computador , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Óvulo/citologia , Óvulo/metabolismo , Virginia , Leveduras/citologia , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...