Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(10): e109402, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25279789

RESUMO

The paper presents the results of a study conducted at the Auschwitz-Birkenau State Museum in Oswiecim on the occurrence of biodeterioration. Visual assessment of the buildings revealed signs of deterioration of the buildings in the form of dampness, bulging and crumbling plaster, and wood fiber splitting. The external surfaces, and especially the concrete strips and ground immediately adjoining the buildings, were colonized by bryophytes, lichens, and algae. These organisms developed most intensively close to the ground on the northern sides of the buildings. Inside the buildings, molds and bacteria were not found to develop actively, while algae and wood-decaying fungi occurred locally. The factors conducive to biological corrosion in the studied buildings were excessive dampness of structural partitions close to the ground and a relative air humidity of above 70%, which was connected to ineffective moisture insulation. The influence of temperature was smaller, as it mostly affected the quantitative composition of the microorganisms and the qualitative composition of the algae. Also the impact of light was not very strong, but it was conducive to algae growth.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Bactérias/crescimento & desenvolvimento , Campos de Concentração , Monitoramento Ambiental , Fungos/crescimento & desenvolvimento , Umidade , Prisões , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Fungos/genética , Fungos/isolamento & purificação , Museus , RNA Ribossômico 16S/genética , Madeira/microbiologia
2.
Sci Total Environ ; 493: 116-23, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24937497

RESUMO

Aerial phototrophs colonize materials of anthropogenic origin, thus contributing to their biodeterioration. Structures preserved at the former Auschwitz II-Birkenau concentration and extermination camp show signs of degradation by cyanobacteria and algae. In order to protect the Auschwitz-Birkenau Memorial Site, diversity of aerial phototrophs growing on the historic buildings has been studied. Analyses of cyanobacterial and algal biofilms growing on various construction substrates were carried out in summer and winter. Multivariate data analyses were used to: characterize the diversity of cyanobacteria and algae growing in brick and wooden camp buildings depending on the research season, indicate preferences of cyanobacteria and algae in colonizing substrates, and to predict the environmental factor that most determines the growth of phototrophs. The biofilms were formed mainly by cyanobacteria, green algae and diatoms. The amount of cyanobacteria and algae in the biofilms was varied, which resulted from changes in climatic conditions, the type of substrate and the height at which the biofilms developed. In the summer, the ratio of cyanobacteria and algae groups was balanced, while in the winter, green algae and diatoms were dominant. Green algae showed a preference for colonizing plaster, wood and concrete, of which the walls and doors of the buildings were made. Their participation was correlated with a height gradient. Cyanobacteria and diatoms grew on bricks and soil on the floor of the buildings and temperature and relative humidity were the factors that modified their amount. Green algae were more cosmopolitan-occurred in dry places, potentially inaccessible to other organisms; therefore, they have been identified as the pioneer group in the prevailing climatic conditions.


Assuntos
Biofilmes , Monitoramento Ambiental , Microbiologia do Ar , Bactérias/crescimento & desenvolvimento , Clorófitas/crescimento & desenvolvimento , Campos de Concentração , Cianobactérias/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Estações do Ano
3.
Ann Microbiol ; 64: 799-808, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860283

RESUMO

The objective of this study was to assess biological colonization of wooden and brick buildings in the former Auschwitz II-Birkenau concentration camp, and to identify the organisms colonizing the examined buildings. Microbiological analysis did not reveal increased microbial activity, and the total microbial count of the barrack surfaces did not exceed 103 CFU/100 cm2. However, certain symptoms of biodegradation of the buildings were observed. The predominant microflora consisted of bacteria of the genera Bacillus, Sporosarcina, Pseudomonas, Micrococcus, Streptomyces, and Staphylococcus, as well as fungi of the genera Acremonium, Cladosporium, Alternaria, Humicola, Penicillium, and Chaetomium. The microflora patterns varied both in wooden and brick buildings. The structural elements of wooden and brick barracks, and especially of the floors and lower parts of bathroom walls, were infected by cyanobacteria and algae, with the most numerous being cyanobacteria of the genera Scytonema, Chroococcus, Gloeothece, Leptolyngbya, diatoms of the genus Diadesmis, and chlorophytes of the genera Chlorella and Apatococcus. The outer surfaces of the examined buildings were primarily colonized by lichens and bryophytes, with nearly 30 species identified. The dominant species of lichens belonged to the genera Candelariella, Caloplaca, Lecanora, Lecidea, Lepraria, Physcia, and Protoparmeliopsis, and those of bryophytes to the genera Bryum, Ceratodon, Marchantia, and Tortula. The quantity and species diversity of lichens and mosses were much lower in wooden barracks than in brick ones. The external surfaces of those barracks were only affected by Lecanora conizaeoides, Lecanora symmicta, Lepraria cf. incana, and Strangospora pinicola. The study results revealed vast biodiversity among the species colonizing historic buildings. The presence of these groups of organisms, resulting from their natural expansion in the environment, is undesirable, as their excessive growth and spread may lead to progressive biodegradation of buildings. Our assessment of biological contamination will enable the development of a disinfection and conservation plan for the examined buildings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...