Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834041

RESUMO

Persistent high-risk human papillomavirus (HPV) infection is a pivotal factor in the progression of cervical cancer. In recent years, an increasing interest has emerged in comprehending the influence of HPV on head and neck squamous cell carcinoma (HNSCC). Notably, it is well established that HPV-associated HNSCC show cases with distinct molecular and clinical attributes compared to HPV-negative cases. The present study delves into the epigenetic landscape of HPV16, specifically its L1 gene and untranslated region (UTR), through pyrosequencing, while the HPV16 DNA physical status was evaluated using E2/E6 ratio analysis in HPV16-positive HNSCC FFPE biopsies. Our findings reveal substantial methylation across six sites within the HPV16 L1 gene and seven sites in the UTR. Specifically, methylation percentages of two L1 CpG sites (7136, 7145) exhibit significant associations with tumor histological grade (p < 0.01), while proving concurrent methylation across multiple sites. The HPV16 DNA physical status was not correlated with the methylation of viral genome or tumor characteristics. This is the first study that examines epigenetic modifications and the HPV16 DNA physical status in Greek HNSCC patients. Our findings suggest an orchestrated epigenetic modulation among specific sites, impacting viral gene expression and intricate virus-host interactions.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Feminino , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações , Papillomavirus Humano , Carcinoma de Células Escamosas/patologia , Metilação de DNA , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/complicações , DNA/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , DNA Viral/genética , DNA Viral/metabolismo
2.
Viruses ; 14(8)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36016346

RESUMO

Recent trends have shown a dramatic rise in the incidence of oropharyngeal squamous cell carcinoma strongly associated with high-risk human papillomavirus (HPV) of type 16. The genetic variability of HPV16 has been extensively studied in cervical cancer but there are very limited published data concerning the genetic variations of this HPV type in oropharyngeal cancer. In the present study, the genetic variations of HPV16 E6 gene sequences originated from a small cohort of Greek patients diagnosed with oropharyngeal cancer were assessed. The vast majority of the sequences clustered within the European variant branch. The T350G variation was found to be the predominant one. This finding may indicate the need for further studies that could explain the possible impact of this variant in the pathomechanisms of oropharyngeal cancer.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Feminino , Grécia/epidemiologia , Papillomavirus Humano 16/genética , Humanos , Proteínas Oncogênicas Virais/genética , Neoplasias Orofaríngeas/epidemiologia , Neoplasias Orofaríngeas/virologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/epidemiologia , Proteínas Repressoras
3.
Cells ; 11(9)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563792

RESUMO

Axonal growth is mediated by coordinated changes of the actin and microtubule (MT) cytoskeleton. Ample evidence suggests that members of the formin protein family are involved in the coordination of these cytoskeletal rearrangements, but the molecular mechanisms of the formin-dependent actin-microtubule crosstalk remains largely elusive. Of the six Drosophila formins, DAAM was shown to play a pivotal role during axonal growth in all stages of nervous system development, while FRL was implicated in axonal development in the adult brain. Here, we aimed to investigate the potentially redundant function of these two formins, and we attempted to clarify which molecular activities are important for axonal growth. We used a combination of genetic analyses, cellular assays and biochemical approaches to demonstrate that the actin-processing activity of DAAM is indispensable for axonal growth in every developmental condition. In addition, we identified a novel MT-binding motif within the FH2 domain of DAAM, which is required for proper growth and guidance of the mushroom body axons, while being dispensable during embryonic axon development. Together, these data suggest that DAAM is the predominant formin during axonal growth in Drosophila, and highlight the contribution of multiple formin-mediated mechanisms in cytoskeleton coordination during axonal growth.


Assuntos
Proteínas de Drosophila , Drosophila , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Axônios/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Forminas , Neurogênese/genética , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...