Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 4731, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948763

RESUMO

Mastering the dynamics of molecular assembly on surfaces enables the engineering of predictable structural motifs to bestow programmable properties upon target substrates. Yet, monitoring self-assembly in real time on technologically relevant interfaces between a substrate and a solution is challenging, due to experimental complexity of disentangling interfacial from bulk phenomena. Here, we show that graphene devices can be used as highly sensitive detectors to read out the dynamics of molecular self-assembly at the solid/liquid interface in-situ. Irradiation of a photochromic molecule is used to trigger the formation of a metastable self-assembled adlayer on graphene and the dynamics of this process are monitored by tracking the current in the device over time. In perspective, the electrical readout in graphene devices is a diagnostic and highly sensitive means to resolve molecular ensemble dynamics occurring down to the nanosecond time scale, thereby providing a practical and powerful tool to investigate molecular self-organization in 2D.

2.
Adv Mater ; 32(26): e2001268, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32378243

RESUMO

Van der Waals heterostructures (VDWHs), obtained via the controlled assembly of 2D atomically thin crystals, exhibit unique physicochemical properties, rendering them prototypical building blocks to explore new physics and for applications in optoelectronics. As the emerging alternatives to graphene, monolayer transition metal dichalcogenides and bottom-up synthesized graphene nanoribbons (GNRs) are promising candidates for overcoming the shortcomings of graphene, such as the absence of a bandgap in its electronic structure, which is essential in optoelectronics. Herein, VDWHs comprising GNRs onto monolayer MoS2 are fabricated. Field-effect transistors (FETs) based on such VDWHs show an efficient suppression of the persistent photoconductivity typical of MoS2 , resulting from the interfacial charge transfer process. The MoS2 -GNR FETs exhibit drastically reduced hysteresis and more stable behavior in the transfer characteristics, which is a prerequisite for the further photomodulation of charge transport behavior within the MoS2 -GNR VDWHs. The physisorption of photochromic molecules onto the MoS2 -GNR VDWHs enables reversible light-driven control over charge transport. In particular, the drain current of the MoS2 -GNR FET can be photomodulated by 52%, without displaying significant fatigue over at least 10 cycles. Moreover, four distinguishable output current levels can be achieved, demonstrating the great potential of MoS2 -GNR VDWHs for multilevel memory devices.

3.
Nat Commun ; 9(1): 3689, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190476

RESUMO

The original version of this article incorrectly listed an affiliation of Sara Bonacchi as 'Present address: Institut National de la Recherche Scientifique (INRS), EMT Center, Boulevard Lionel-Boulet, Varennes, QC, J3X 1S2, 1650, Canada', instead of the correct 'Present address: Department of Chemical Sciences - University of Padua - Via Francesco Marzolo 1 - 35131 Padova - Italy'. And an affiliation of Emanuele Orgiu was incorrectly listed as 'Present address: Department of Chemical Sciences, University of Padua, Via Francesco Marzolo 1, Padova, 35131, Italy', instead of the correct 'Present address: Institut National de la Recherche Scientifique (INRS), EMT Center, Boulevard Lionel-Boulet, Varennes, QC, J3X 1S2, 1650, Canada'. This has been corrected in both the PDF and HTML versions of the article.

4.
Nat Commun ; 9(1): 2661, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985413

RESUMO

Molecular switches enable the fabrication of multifunctional devices in which an electrical output can be modulated by external stimuli. The working mechanism of these devices is often hard to prove, since the molecular switching events are only indirectly confirmed through electrical characterization, without real-space visualization. Here, we show how photochromic molecules self-assembled on graphene and MoS2 generate atomically precise superlattices in which a light-induced structural reorganization enables precise control over local charge carrier density in high-performance devices. By combining different experimental and theoretical approaches, we achieve exquisite control over events taking place from the molecular level to the device scale. Unique device functionalities are demonstrated, including the use of spatially confined light irradiation to define reversible lateral heterojunctions between areas possessing different doping levels. Molecular assembly and light-induced doping are analogous for graphene and MoS2, demonstrating the generality of our approach to optically manipulate the electrical output of multi-responsive hybrid devices.

5.
Chem Commun (Camb) ; 49(36): 3799-801, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23535884

RESUMO

An up to 18-fold increase of the turnover frequency (TOF) in the catalase-like hydrogen peroxide dismutation reaction is observed by incorporation of substituents in the ß-position of xanthene-modified iron corroles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...