Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 7(2): 921-31, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23320459

RESUMO

Here it is demonstrated that multiple-energy, anomalous small-angle X-ray scattering (ASAXS) provides significant enhancement in sensitivity to internal material boundaries of layered nanoparticles compared with the traditional modeling of a single scattering energy, even for cases in which high scattering contrast naturally exists. Specifically, the material-specific structure of monodispersed Fe3O4|γ-Mn2O3 core|shell nanoparticles is determined, and the contribution of each component to the total scattering profile is identified with unprecedented clarity. We show that Fe3O4|γ-Mn2O3 core|shell nanoparticles with a diameter of 8.2 ± 0.2 nm consist of a core with a composition near Fe3O4 surrounded by a (Mn(x)Fe(1-x))3O4 shell with a graded composition, ranging from x ≈ 0.40 at the inner shell toward x ≈ 0.46 at the surface. Evaluation of the scattering contribution arising from the interference between material-specific layers additionally reveals the presence of Fe3O4 cores without a coating shell. Finally, it is found that the material-specific scattering profile shapes and chemical compositions extracted by this method are independent of the original input chemical compositions used in the analysis, revealing multiple-energy ASAXS as a powerful tool for determining internal nanostructured morphology even if the exact composition of the individual layers is not known a priori.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...