Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610398

RESUMO

This study was focused on the analysis of the emission of volatile compounds as an indicator of changes in the quality degradation of corn groats with 14% and 17% moisture content (wet basis) using an electronic nose (Agrinose) at changing vertical pressure values. The corn groats were used in this study in an unconsolidated state of 0 kPa (the upper free layer of bulk material in the silo) and under a consolidation pressure of 40 kPa (approximately 3 m from the upper layer towards the bottom of the silo) and 80 kPa (approximately 6 m from the upper layer towards the bottom of the silo). The consolidation pressures corresponded to the vertical pressures acting on the layers of the bulk material bed in medium-slender and low silos. Chromatographic determinations of volatile organic compounds were performed as reference tests. The investigations confirmed the correlation of the electronic nose response with the quality degradation of the groats as a function of storage time. An important conclusion supported by the research results is that, based on the determined levels of intensity of volatile compound emission, the electronic nose is able to distinguish the individual layers of the bulk material bed undergoing different degrees of quality degradation.

2.
Materials (Basel) ; 16(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37109902

RESUMO

The aim of this study was to determine the emission of organic volatile compounds from maize grain as a function of granularity and packing density of bulk material in conditions imitating processes occurring in silos. The study was carried out with the use of a gas chromatograph and an electronic nose, which was designed and constructed at the Institute of Agrophysics of PAS and has a matrix of eight MOS (metal oxide semiconductor) sensors. A 20-L volume of maize grain was consolidated in the INSTRON testing machine with pressures of 40 and 80 kPa. The control samples were not compacted, and the maize bed had bulk density. The analyses were carried out at a moisture content of 14% and 17% (w.b.-wet basis). The measurement system facilitated quantitative and qualitative analyses of volatile organic compounds and the intensity of their emission during 30-day storage. The study determined the profile of volatile compounds as a function of storage time and the grain bed consolidation level. The research results indicated the degree of grain degradation induced by the storage time. The highest emission of volatile compounds was recorded on the first four days, which indicated a dynamic nature of maize quality degradation. This was confirmed by the measurements performed with electrochemical sensors. In turn, the intensity of the volatile compound emission decreased in the next stage of the experiments, which showed a decline in the quality degradation dynamics. The sensor responses to the emission intensity decreased significantly at this stage. The electronic nose data on the emission of VOCs (volatile organic compounds) as well as grain moisture and bulk volume can be helpful for the determination of the quality of stored material and its suitability for consumption.

3.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500625

RESUMO

The aim of this study was to detect and identify the volatile compounds in coffee that was obtained in defect roast processes versus standard roasting and to determine the type and strength of the correlations between the roast defects and the volatile compound profile in roasted coffee beans. In order to achieve this goal, the process of coffee bean roasting was set to produce an underdeveloped coffee defect, an overdeveloped coffee defect, and defectless coffee. The "Typica" variety of Arabica coffee beans was used in this study. The study material originated from a plantation that is located at an altitude of 1400-2000 m a.s.l. in Huehuetenango Department, Guatemala. The analyses were carried out with the use of gas chromatography/mass spectrometry (GC-MS) and an electronic nose. This study revealed a correlation between the identified groups of volatile compounds and the following coffee roasting parameters: the time to the first crack, the drying time, and the mean temperatures of the coffee beans and the heating air. The electronic nose helped to identify the roast defects.


Assuntos
Coffea , Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas , Manipulação de Alimentos/métodos , Dessecação , Temperatura , Temperatura Alta , Coffea/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...