Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(47): 27932-27939, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35519109

RESUMO

Numerous efforts have already been made to optimize nitridation of crystalline sapphire (c-Al2O3) substrates whereas very little attention has been paid to nitridation of amorphous aluminum oxide layers (a-AlO x ). An extensive analysis of the reaction of amorphous aluminum oxide films with nitrogen species is thus needed to clarify the mechanisms of nitrogen incorporation into such layers and to control their properties. In this work X-ray photoelectron spectroscopy was used to determine the chemical state of nitrogen formed by nitrogen plasma treatment of c-Al2O3 and 15 nm thick a-AlO x layers grown by atomic layer deposition on Si and sapphire substrates. The results show that the nitridation proceeds significantly different for c-Al2O3 and a-AlO x samples, which we correlate with the initial stoichiometry of both materials. At the surface of sapphire O vacancies were found, which are necessary for the formation of AlN-type bonding via diffusion limited replacement of oxygen by nitrogen. This process was slow and involved formation of oxinitride AlN-O. After 80 min of nitridation only ∼3.4 at% of N was incorporated. In contrast, in a-AlO x layers Al vacancies were present before nitridation. This opened a new, more effective path for nitrogen incorporation via accumulation of N in the cation-deficient lattice and creation of the Al(NO y ) x phase, followed by AlN and AlN-O formation. This scenario predicts more effective nitrogen incorporation into a-AlO x than c-Al2O3, as indeed observed. It also explains our finding that more N was incorporated into a-AlO x on Si than on sapphire due to supply of oxygen from the sapphire substrate.

2.
Nanotechnology ; 30(15): 154002, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30641512

RESUMO

A comprehensive description of the self-assembled formation of GaN nanowires (NWs) by plasma-assisted molecular beam epitaxy (PAMBE) on amorphous-Al x O y buffered Si is presented. The incubation time that precedes the formation of GaN NWs is analyzed as a function of the growth parameters using line-of-sight quadrupole mass spectrometry. We found that the incubation time follows an Arrhenius-type temperature dependence as well as an inverse power law with respect to the Ga flux. Our results reveal a weaker dependence of the incubation time on the Ga flux and faster nucleation on amorphous-Al x O y in comparison to conventional nitridated Si substrates. In addition, an unprecedented analysis of the dependence of the incubation time on the N flux demonstrates a stronger dependence of the incubation time on the N than on the Ga flux. Our results are summarized in growth diagrams to visualize the impact of the growth parameters on the incubation time. The diagrams can also be used to predict the incubation time for so far unexplored growth conditions. Finally, we measured the desorbing Ga flux upon the nucleation stage to determine the growth parameters that result in effective N-rich conditions as required for the self-assembled formation of GaN NWs. These original measurements were combined with the knowledge gained on the incubation time to create a growth map that illustrates the different growth regimes that can be obtained when GaN is grown on an amorphous-Al x O y buffer layer, regardless of the host substrate. Such a map provides a useful guide to induce the growth and control the morphology of GaN NW ensembles on amorphous-Al x O y . Results presented in this work allow to conclude that amorphous-Al x O y is preferred over nitridated Si as it enables shorter incubation times as well as a wider range of growth parameters to induce the self-assembled formation of GaN NWs in PAMBE.

3.
J Phys Condens Matter ; 30(31): 315301, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-29939153

RESUMO

Optical phenomena in an ensemble of high-quality GaN nanowires (NWs) grown on a Si substrate have been studied by reflectance and time-resolved luminescence. Such NWs form a structure that acts as a virtual layer that specifically reflects and polarizes light and can be characterized by an effective refractive index. In fact we have found that the NW ensembles of high NW density (high filling fraction) behave rather like a layer of effective medium described by the Maxwell Garnett approximation. Moreover, light extinction and strong depolarization are observed that we assign to scattering and interference of light inside the NW ensemble. The wavelength range of high extinction and depolarization correlates well with transverse localization wavelength estimated for such an ensemble of NWs, so we suppose that these effects are due to Anderson localization of light. We also report results of time-resolved measurements of polarization of individual emission centers including free and bound excitons (D0XA, 3.47 eV), inversion domain boundaries (IDB, 3.45 eV) and stacking faults (SF, 3.42 eV). The emission of the D0XA and SF lines is polarized perpendicular to GaN c-axis while the 3.45 eV line is polarized along the c-axis which supports a hypothesis that this line is emitted from IDBs. Time-dependent depolarization of luminescence is observed during the first 0.1 ns after excitation and is interpreted as the result of interaction of the emission centers with hot particles existing for a short time after excitation.

4.
Nanotechnology ; 27(32): 325601, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354451

RESUMO

We present a comprehensive description of the self-assembled nucleation and growth of GaN nanowires (NWs) by plasma-assisted molecular beam epitaxy on amorphous Al x O y buffers (a-Al x O y ) prepared by atomic layer deposition. The results are compared with those obtained on nitridated Si(111). Using line-of-sight quadrupole mass spectrometry, we analyze in situ the incorporation of Ga starting from the incubation and nucleation stages till the formation of the final nanowire ensemble and observe qualitatively the same time dependence for the two types of substrates. However, on a-Al x O y the incubation time is shorter and the nucleation faster than on nitridated Si. Moreover, on a-Al x O y we observe a novel effect of decrease in incorporated Ga flux for long growth durations which we explain by coalescence of NWs leading to reduction of the GaN surface area where Ga may reside. Dedicated samples are used to analyze the evolution of surface morphology. In particular, no GaN nuclei are detected when growth is interrupted during the incubation stage. Moreover, for a-Al x O y , the same shape transition from spherical cap-shaped GaN crystallites to the NW-like geometry is found as it is known for nitridated Si. However, while the critical radius for this transition is only slightly larger for a-Al x O y than for nitridated Si, the critical height is more than six times larger for a-Al x O y . Finally, we observe that in fully developed NW ensembles, the substrate no longer influences growth kinetics and the same N-limited axial growth rate is measured on both substrates. We conclude that the same nucleation and growth processes take place on a-Al x O y as on nitridated Si and that these processes are of a general nature. Quantitatively, nucleation proceeds somewhat differently, which indicates the influence of the substrate, but once shadowing limits growth processes to the upper part of the NW ensemble, they are not affected anymore by the type of substrate.

5.
Nanotechnology ; 25(13): 135610, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24598248

RESUMO

The growth mode and structural and optical properties of novel type of inclined GaN nanowires (NWs) grown by plasma-assisted MBE on Si(001) substrate were investigated. We show that due to a specific nucleation mechanism the NWs grow epitaxially on the Si substrate without any Si(x)N(y) interlayer, first in the form of zinc-blende islands and then as double wurtzite GaN nanorods with Ga-polarity. X-ray measurements show that orientation of these nanowires is epitaxially linked to the symmetry of the substrate so that [0001] axis of w-GaN nanowire is directed along the [111]Si axis. This is different from commonly observed behavior of self-induced GaN NWs that are N-polar and grow perpendicularly to the surface of nitridized silicon substrate independently on its orientation. The inclined NWs exhibit bright luminescence of bulk donor-bound excitons (D(0)X) at 3.472 eV and exciton-related peak at 3.46 eV having a long lifetime (0.7 ns at 4 K) and observable up to 50 K.

6.
Nanotechnology ; 24(3): 035703, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23262581

RESUMO

An arrangement of self-assembled GaN nanowires (NWs) grown by plasma-assisted molecular beam epitaxy on a Si(111) substrate is studied as a function of the temperature at which the substrate is nitridized before GaN growth. We show that the NWs grow with the c-axis perpendicular to the substrate surface independently of nitridation temperature with only a slight improvement in tilt coherency for high nitridation temperatures. A much larger influence of the substrate nitridation process on the in-plane arrangement of NWs is found. For high (850 °C) and medium (450 °C) nitridation temperatures angular twist distributions are relatively narrow and NWs are epitaxially aligned to the substrate in the same way as commonly observed in GaN on Si(111) planar layers with an AlN buffer. However, if the substrate is nitridized at low temperature (~150 °C) the epitaxial relationship with the substrate is lost and an almost random in-plane orientation of GaN NWs is observed. These results are correlated with a microstructure of silicon nitride film created on the substrate as the result of the nitridation procedure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...