Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-471527

RESUMO

The authors have withdrawn this manuscript due to a duplicate posting of manuscript number BIORXIV/2021/468942. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-468942

RESUMO

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human cells. To date, several "Variants of Concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the four SARS-CoV-2 VOCs (Alpha, Beta, Gamma and Delta) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all four VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had little effect, while knock-down of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than four orders of magnitude. In addition, an antibody directed against the N-terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominating Delta variant. IMPORTANCERecent results showed that an early SARS-CoV-2 isolate requires endogenously expressed IFITM proteins for efficient infection. However, whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that out-competed the original strains and currently dominate the pandemic remained to be determined. Here, we demonstrate that depletion of endogenous IFITM2 expression almost entirely prevents the production of infectious Alpha, Beta, Gamma and Delta VOC SARS-CoV-2 virions in a human lung cell line. In comparison, silencing of IFITM1 had little impact, while knock-down of IFITM3 had intermediate effects on viral replication. Finally, an antibody targeting the N-terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs including the currently dominant Delta variant are dependent on IFITM2 for efficient replication suggesting that IFITM proteins play a key role in viral transmission and pathogenicity.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-446386

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the COVID-19 pandemic, most likely emerged from bats1. A prerequisite for this devastating zoonosis was the ability of the SARS-CoV-2 Spike (S) glycoprotein to use human angiotensin-converting enzyme 2 (ACE2) for viral entry. Although the S protein of the closest related bat virus, RaTG13, shows high similarity to the SARS-CoV-2 S protein it does not efficiently interact with the human ACE2 receptor2. Here, we show that a single T403R mutation allows the RaTG13 S to utilize the human ACE2 receptor for infection of human cells and intestinal organoids. Conversely, mutation of R403T in the SARS-CoV-2 S significantly reduced ACE2-mediated virus infection. The S protein of SARS-CoV-1 that also uses human ACE2 also contains a positive residue (K) at this position, while the S proteins of CoVs utilizing other receptors vary at this location. Our results indicate that the presence of a positively charged amino acid at position 403 in the S protein is critical for efficient utilization of human ACE2. This finding could help to predict the zoonotic potential of animal coronaviruses.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-340612

RESUMO

The innate immune system constitutes a powerful barrier against viral infections. However, it may fail because successful emerging pathogens, like SARS-CoV-2, evolved strategies to counteract it. Here, we systematically assessed the impact of 29 SARS-CoV-2 proteins on viral sensing, type I, II and III interferon (IFN) signaling, autophagy and inflammasome formation. Mechanistic analyses show that autophagy and type I IFN responses are effectively counteracted at different levels. For example, Nsp14 induces loss of the IFN receptor, whereas ORF3a disturbs autophagy at the Golgi/endosome interface. Comparative analyses revealed that antagonism of type I IFN and autophagy is largely conserved, except that SARS-CoV-1 Nsp15 is more potent in counteracting type I IFN than its SARS-CoV-2 ortholog. Altogether, however, SARS-CoV-2 counteracts type I IFN responses and autophagy much more efficiently than type II and III IFN signaling. Consequently, the virus is relatively resistant against exogenous IFN-/{beta} and autophagy modulation but remains highly vulnerable towards IFN-{gamma} and -{lambda} treatment. In combination, IFN-{gamma} and -{lambda} act synergistically, and drastically reduce SARS-CoV-2 replication at exceedingly low doses. Our results identify ineffective type I and II antagonism as weakness of SARS-CoV-2 that may allow to devise safe and effective anti-viral therapies based on targeted innate immune activation.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-255935

RESUMO

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) are thought to restrict numerous viral pathogens including severe acute respiratory syndrome coronaviruses (SARS-CoVs). However, most evidence comes from single-round pseudovirus infection studies of cells that overexpress IFITMs. Here, we verified that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. Strikingly, however, endogenous IFITM expression was essential for efficient infection of genuine SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral entry. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. Intriguingly, IFITM-derived peptides and targeting antibodies inhibited SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are important cofactors for SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and suitable targets for therapeutic approaches.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-183764

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). To identify factors of the respiratory tract that suppress SARS-CoV-2, we screened a peptide/protein library derived from bronchoalveolar lavage, and identified 1-antitrypsin (1-AT) as specific inhibitor of SARS-CoV-2. 1-AT targets the viral spike protein and blocks SARS-CoV-2 infection of human airway epithelium at physiological concentrations. Our findings show that endogenous 1-AT restricts SARS-CoV-2 and repurposes 1-AT-based drugs for COVID-19 therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...