Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Neurooncol Adv ; 6(1): vdae071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957163

RESUMO

Background: This retrospective study compares the real-world performance of cerebrospinal fluid (CSF) CNSide™ versus cytology in leptomeningeal disease (LMD). Methods: Consecutive patients with suspected LMD who underwent lumbar punctures for CSF cytology and CNSide™ from January 2020 to December 2022 were reviewed. LMD was classified by EANO criteria. Descriptive statistics, confusion matrix, Kaplan-Meier curves, and Cox proportional regression were used. Results: Median age for 87 evaluable patients was 63 years (range: 23-93); 82 (94%) met EANO criteria for possible/probable/confirmed LMD (EANO/LMD). The commonest primary cancers were breast (36,44.0%) and lung (34,41.5%). Primary lung harbored actionable mutations in 18 (53.0%); primary breast expressed hormone receptors in 27 (75%), and HER2 amplification in 8 (22%). Uncontrolled systemic disease was detected in 35 (40%), while 25 (46%) received systemic therapy with medium/high CNS penetrance at LMD diagnosis. The median time from initial cancer to LMD diagnosis was 31 months (range: 13-73). LMD was confirmed by CSF cytology in 23/82 (28%), all identified by CNSide™. CNSide™ identified 13 additional cases (36/82, 43.9%), increasing diagnostic yield by 56.5%. Median overall survival (mOS) was 31 weeks (95%CI: 21-43), significantly worse for CNSide™ positive versus negative: 4.0 versus 16.0 weeks, respectively (HR = 0.50, P = .010). While survival since LMD diagnosis did not differ by histology, time to LMD diagnosis from initial cancer diagnosis was longer for breast (48.5 months, IQR: 30.0-87.5) versus lung (8 months, IQR:0.5-16.0) cohorts. mOS was longer for patients eligible for intrathecal chemotherapy (HR: 0.189, 95%CI: 0.053-0.672, P = .010). Conclusions: This retrospective, real-world analysis of CNSide™ showed increased sensitivity versus cytology and provided clinically relevant molecular CSF analyses.

2.
PLoS One ; 19(7): e0306142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954698

RESUMO

Developing T1-weighted magnetic resonance imaging (MRI) contrast agents with enhanced biocompatibility and targeting capabilities is crucial owing to concerns over current agents' potential toxicity and suboptimal performance. Drawing inspiration from "biomimetic camouflage," we isolated cell membranes (CMs) from human glioblastoma (T98G) cell lines via the extrusion method to facilitate homotypic glioma targeting. At an 8:1 mass ratio of ferric chloride hexahydrate to gallic acid (GA), the resulting iron (Fe)-GA nanoparticles (NPs) proved effective as a T1-weighted MRI contrast agent. T98G CM-coated Fe-GA NPs demonstrated improved homotypic glioma targeting, validated through Prussian blue staining and in vitro MRI. This biomimetic camouflage strategy holds promise for the development of targeted theranostic agents in a safe and effective manner.


Assuntos
Meios de Contraste , Ácido Gálico , Imageamento por Ressonância Magnética , Ácido Gálico/química , Humanos , Imageamento por Ressonância Magnética/métodos , Linhagem Celular Tumoral , Meios de Contraste/química , Ferro/química , Materiais Biomiméticos/química , Glioblastoma/tratamento farmacológico , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Nanopartículas/química , Compostos Férricos/química , Membrana Celular/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38943565

RESUMO

Presently, realizing high ethanol selectivity in CO2 electroreduction remains challenging due to difficult C-C coupling and fierce product competition. In this work, we report an innovative approach for improving the efficiency of Cu-based electrocatalysts in ethanol generation from electrocatalytic CO2 reduction using a crystal plane modification strategy. These novel Cu-based electrocatalysts were fabricated by electrochemically activating three-dimensional (3D) flower-like CuO micro/nanostructures grown in situ on copper foils and modifying with surfactants. It was demonstrated that the fabricated Cu-based electrocatalyst featured a predominantly exposed Cu(100) surface loaded with high-density Cu nanoparticles (NPs). The optimal Cu-based electrocatalyst displayed considerably improved CO2 electroreduction performance, with a Faraday efficiency of 37.9% for ethanol and a maximum Faraday efficiency of 68.0% for C2+ products at -1.4 V vs RHE in an H-cell, accompanied by a high current density of 69.9 mA·cm-2, much better than the particulate Cu-based electrocatalyst. It was unveiled that the Cu(100)-rich surface of nanoscale petals with abundant under-coordinated copper atoms from CuNPs was conducive to the formation and stabilization of key *CH3CHO and *OC2H5 intermediates, thereby promoting ethanol generation. This study highlighted the critical role of CuNP-loaded Cu(100) surface structures on structured Cu-based electrocatalysts in enhancing ethanol production for the CO2 electroreduction process.

4.
Front Cardiovasc Med ; 11: 1374241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841257

RESUMO

Hereditary transthyretin amyloid (ATTRv) cardiomyopathy (CM) is caused by mutations in the TTR gene. TTR mutations contribute to TTR tetramer destabilization and dissociation, leading to excessive deposition of insoluble amyloid fibrils in the myocardium and finally resulting in cardiac dysfunction. In this article, we report a case of a Chinese patient with transthyretin mutation p.D58Y and provide detailed information on cardiac amyloidosis, including transthoracic echocardiography, cardiac magnetic resonance, and SPECT imaging for the first time. Our report aims to provide a better understanding of ATTR genotypes and phenotypes.

5.
Plant Cell Rep ; 43(6): 159, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822842

RESUMO

KEY MESSAGE: AcEXPA1, an aluminum (Al)-inducible expansin gene, is demonstrated to be involved in carpetgrass (Axonopus compressus) root elongation under Al toxicity through analyzing composite carpetgrass plants overexpressing AcEXPA1. Aluminum (Al) toxicity is a major mineral toxicity that limits plant productivity in acidic soils by inhibiting root growth. Carpetgrass (Axonopus compressus), a dominant warm-season turfgrass widely grown in acidic tropical soils, exhibits superior adaptability to Al toxicity. However, the mechanisms underlying its Al tolerance are largely unclear, and knowledge of the functional genes involved in Al detoxification in this turfgrass is limited. In this study, phenotypic variation in Al tolerance, as indicated by relative root elongation, was observed among seventeen carpetgrass genotypes. Al-responsive genes related to cell wall modification were identified in the roots of the Al-tolerant genotype 'A58' via transcriptome analysis. Among them, a gene encoding α-expansin was cloned and designated AcEXPA1 for functional characterization. Observed Al dose effects and temporal responses revealed that Al induced AcEXPA1 expression in carpetgrass roots. Subsequently, an efficient and convenient Agrobacterium rhizogenes-mediated transformation method was established to generate composite carpetgrass plants with transgenic hairy roots for investigating AcEXPA1 involvement in carpetgrass root growth under Al toxicity. AcEXPA1 was successfully overexpressed in the transgenic hairy roots, and AcEXPA1 overexpression enhanced Al tolerance in composite carpetgrass plants through a decrease in Al-induced root growth inhibition. Taken together, these findings suggest that AcEXPA1 contributes to Al tolerance in carpetgrass via root growth regulation.


Assuntos
Alumínio , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Raízes de Plantas , Plantas Geneticamente Modificadas , Alumínio/toxicidade , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adaptação Fisiológica/genética , Adaptação Fisiológica/efeitos dos fármacos , Poaceae/genética , Poaceae/efeitos dos fármacos
6.
Front Immunol ; 15: 1404812, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938564

RESUMO

Background: The therapeutic effectiveness of immune checkpoint inhibitors (ICIs) in bladder cancer varies among individuals. Identifying reliable predictors of response to these therapies is crucial for optimizing patient outcomes. Methods: This retrospective study analyzed 348 bladder cancer patients treated with ICIs, with additional validation using data from 248 patients at our institution who underwent PD-L1 immunohistochemical staining. We examined patient smoking history, clinicopathological characteristics, and immune phenotypes. The main focus was the correlation between smoking history and immunotherapy outcomes. Multivariate logistic and Cox proportional hazard regressions were used to adjust for confounders. Results: The study cohort comprised 348 bladder cancer patients receiving ICIs. Among them, 116 (33.3%) were never smokers, 197 (56.6%) were former smokers (median pack-years = 28), and 35 (10.1%) were current smokers (median pack-years = 40). Analysis revealed no statistically significant difference in overall survival across different smoking statuses (objective response rates were 11.4% for current smokers, 17.2% for never smokers, and 22.3% for former smokers; P = 0.142, 0.410, and 0.281, respectively). However, a notable trend indicated a potentially better response to immunotherapy in former smokers compared to current and never smokers. In the validation cohort of 248 patients from our institution, immunohistochemical analysis showed that PD-L1 expression was significantly higher in former smokers (55%) compared to current smokers (37%) and never smokers (47%). This observation underscores the potential influence of smoking history on the tumor microenvironment and its responsiveness to ICIs. Conclusion: In conclusion, our study demonstrates the importance of incorporating smoking history in predicting the response to immunotherapy in bladder cancer patients, highlighting its role in personalized cancer treatment approaches. Further research is suggested to explore the comprehensive impact of lifestyle factors on treatment outcomes.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia , Fumar , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/mortalidade , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Fumar/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Resultado do Tratamento , Antígeno B7-H1/metabolismo , Idoso de 80 Anos ou mais , Adulto
7.
Nat Commun ; 15(1): 3933, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730243

RESUMO

As a strategy to improve the therapeutic success of chimeric antigen receptor T cells (CART) directed against solid tumors, we here test the combinatorial use of CART and IMSA101, a newly developed stimulator of interferon genes (STING) agonist. In two syngeneic tumor models, improved overall survival is observed when mice are treated with intratumorally administered IMSA101 in addition to intravenous CART infusion. Transcriptomic analyses of CART isolated from tumors show elevated T cell activation, as well as upregulated cytokine pathway signatures, in particular IL-18, in the combination treatment group. Also, higher levels of IL-18 in serum and tumor are detected with IMSA101 treatment. Consistent with this, the use of IL-18 receptor negative CART impair anti-tumor responses in mice receiving combination treatment. In summary, we find that IMSA101 enhances CART function which is facilitated through STING agonist-induced IL-18 secretion.


Assuntos
Interleucina-18 , Proteínas de Membrana , Receptores de Antígenos Quiméricos , Animais , Interleucina-18/metabolismo , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Humanos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Feminino , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico
8.
Chemistry ; 30(32): e202400899, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38576216

RESUMO

An amphiphilic aza-BODIPY dye (S)-1 bearing two chiral hydrophilic side chains with S-stereogenic centers was synthesized. This dye exhibited kinetic-controlled self-assembly pathways and supramolecular chiral polymorphism properties in MeOH/H2O (9/1, v/v) mixed solvent. The (S)-1 monomers first aggregated into a kinetic controlled, off-pathway species Agg. A, which was spontaneously transformed into an on-pathway metastable aggregate (Agg. B) and subsequently into the thermodynamic Agg. C. The three aggregate polymorphs of dye (S)-1 displayed distinct optical properties and nanomorphologies. In particular, chiral J-aggregation characteristics were observed for both Agg. B and Agg. C, such as Davydov-split absorption bands (Agg. B), extremely sharp and intense J-band with large bathochromic shift (Agg. C), non-diminished fluorescence upon aggregation, as well as strong bisignated Cotton effects. Moreover, the AFM and TEM studies revealed that Agg. A had the morphology of nanoparticle while fibril or rod-like helical nanostructures with left-handedness were observed respectively for Agg. B and Agg. C. By controlling the kinetic transformation process from Agg. B to Agg. C, thin films consisting of Agg. B and Agg. C with different ratios were prepared, which displayed tunable CPL with emission maxima at 788-805 nm and g-factors between -4.2×10-2 and -5.1×10-2.

9.
PeerJ ; 12: e17154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560472

RESUMO

This study aimed to investigate the clinical viability of utilizing the flexor hallucis brevis as an alternative site for neuromuscular monitoring compared to the conventional adductor pollicis. Patients were recruited from three medical centers. Cis-atracurium was administered, and two monitors were employed independently to assess neuromuscular blockade of the adductor pollicis and the ipsilateral flexor hallucis brevis, following a train of four (TOF) pattern until TOF ratios exceeded 0.9 or until the conclusion of surgery. Statistical analysis revealed significant differences in onset time, duration of no-twitch response, spontaneous recovery time, and total monitoring time between the two sites, with mean differences of -53.54 s, -2.49, 3.22, and 5.89 min, respectively (P < 0.001).The posterior tibial nerve-flexor hallucis brevis pathway presents a promising alternative for neuromuscular monitoring during anesthesia maintenance. Further investigation is warranted to explore its utility in anesthesia induction and recovery. Trial registration: The trial was registered at www.chictr.org.cn (20/11/2018, ChiCTR1800019651).


Assuntos
Anestesia Geral , Monitoração Neuromuscular , Humanos , Estudos de Viabilidade , Estudos Prospectivos , Nervo Tibial
10.
Artigo em Inglês | MEDLINE | ID: mdl-38608287

RESUMO

Copper (Cu)-based perovskites are promising for lead-free perovskite light-emitting diodes (PeLEDs). However, it remains a significant challenge to achieve high performance devices due to the nonradiative loss caused by the disordered crystallization and lack of passivation. Crown ethers are known to form host-guest complexes by the interaction between C-O-C groups and certain cations, and 18-crown-6 (18C6) with an appropriate complementary size can interact with Cs+ and Cu+ cations. Herein, we studied the interaction between CsCu2I3 and two crowns with the same cyclic size, 18C6 and dibenzo-18-crown-6 (D18C6). Particularly, D18C6 can reduce the nonradiative recombination rate of CsCu2I3 film by passivating the defects and optimizing the film morphology effectively. The room mean square (RMS) decreased from 5.06 to 2.95 nm, and the PLQY was promoted from 4.71% to 19.9%. Besides, D18C6 can also decrease the barrier of hole injection. The PeLEDs based on D18C6-modified CsCu2I3 realized noticeable improvement with a maximum luminance and EQE of 583 cd/m2 and 0.662%, respectively.

11.
J Ethnopharmacol ; 328: 118128, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38561056

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the clinic, Shenqi Fuzheng Injection (SFI) is used as an adjuvant for cancer chemotherapy. However, the molecular mechanism is unclear. AIM OF THE STUDY: We screened potential targets of SFI action on gliomas by network pharmacology and performed experiments to validate possible molecular mechanisms against gliomas. MATERIALS AND METHODS: We consulted relevant reports on the SFI and glioma incidence from PubMed and Web of Science and focused on the mechanism through which the SFI inhibits glioma. According to the literature, two primary SFI components-Codonopsis pilosula (Franch.) Nannf. and Astragalus membranaceus (Fisch.) Bunge-have been found. All plant names have been sourced from "The Plant List" (www.theplantlist.org). The cell lines U87, T98G and GL261 were used in this study. The inhibitory effects of SFI on glioma cells U87 and T98G were detected by CCK-8 assay, EdU, plate cloning assay, scratch assay, Transwell assay, immunofluorescence, flow cytometry and Western blot. A subcutaneous tumor model of C57BL/6 mice was constructed using GL261 cells, and the SFI was evaluated by HE staining and immunohistochemistry. The targets of glioma and the SFI were screened using network pharmacology. RESULTS: A total of 110 targets were enriched, and a total of 26 major active components in the SFI were investigated. There were a total of 3,343 targets for gliomas, of which 79 targets were shared between the SFI and glioma tissues. SFI successfully prevented proliferation and caused cellular S-phase blockage in U87 and T98G cells, thus decreasing their growth. Furthermore, SFI suppressed cell migration by downregulating EMT marker expression. According to the results of the in vivo tests, the SFI dramatically decreased the development of tumors in a transplanted tumour model. Network pharmacological studies revealed that the SRC/PI3K/AKT signaling pathway may be the pathway through which SFI exerts its anti-glioma effects. CONCLUSIONS: The findings revealed that the SRC/PI3K/AKT signaling pathway may be involved in the mechanism through which SFI inhibits the proliferation and migration of glioma cells.


Assuntos
Medicamentos de Ervas Chinesas , Glioma , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Farmacologia em Rede , Camundongos Endogâmicos C57BL , Transdução de Sinais , Glioma/tratamento farmacológico , Proliferação de Células
12.
Plant Physiol Biochem ; 208: 108535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503187

RESUMO

Aluminum (Al) toxicity is the major constraint on plant growth and productivity in acidic soils. An adaptive mechanism to enhance Al tolerance in plants is mediated malate exudation from roots through the involvement of ALMT (Al-activated malate transporter) channels. The underlying Al tolerance mechanisms of stylo (Stylosanthes guianensis), an important tropical legume that exhibits superior Al tolerance, remain largely unknown, and knowledge of the potential contribution of ALMT genes to Al detoxification in stylo is limited. In this study, stylo root growth was inhibited by Al toxicity, accompanied by increases in malate and citrate exudation from roots. A total of 11 ALMT genes were subsequently identified in the stylo genome and named SgALMT1 to SgALMT11. Diverse responses to metal stresses were observed for these SgALMT genes in stylo roots. Among them, the expressions of 6 out of the 11 SgALMTs were upregulated by Al toxicity. SgALMT2, a root-specific and Al-activated gene, was selected for functional characterization. Subcellular localization analysis revealed that the SgALMT2 protein is localized to the plasma membrane. The function of SgALMT2 in mediating malate release was confirmed by analysis of the malate exudation rate from transgenic composite stylo plants overexpressing SgALMT2. Furthermore, overexpression of SgALMT2 led to increased root growth in transgenic stylo plants treated with Al through decreased Al accumulation in roots. Taken together, the results of this study suggest that malate secretion mediated by SgALMT2 contributes to the ability of stylo to cope with Al toxicity.


Assuntos
Alumínio , Fabaceae , Alumínio/toxicidade , Alumínio/metabolismo , Malatos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fabaceae/metabolismo
13.
Hum Vaccin Immunother ; 20(1): 2318815, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38419524

RESUMO

This study aims to conduct a bibliometric analysis, employing visualization tools to examine literature pertaining to tumor immune evasion related to anti-CTLA-4 and anti-PD-1/PD-L1 therapy from 1999 to 2022. A special emphasis is placed on the interplay between tumor microenvironment, signaling pathways, immune cells and immune evasion, with data sourced from the Web of Science core collection (WoSCC). Advanced tools, including VOSviewer, Citespace, and Scimago Graphica, were utilized to analyze various parameters, such as co-authorship/co-citation patterns, regional contributions, journal preferences, keyword co-occurrences, and significant citation bursts. Out of 4778 publications reviewed, there was a marked increase in research focusing on immune evasion, with bladder cancer being notably prominent. Geographically, China, the USA, and Japan were the leading contributors. Prestigious institutions like MD Anderson Cancer Center, Harvard Medical School, Fudan University, and Sun Yat Sen University emerged as major players. Renowned journals in this domain included Frontiers in Immunology, Cancers, and Frontiers in Oncology. Ehen LP and Wang W were identified as prolific authors on this topic, while Topalian SL stood out as one of the most cited. Research current situation is notably pivoting toward challenges like immunotherapy resistance and the intricate signaling pathways driving drug resistance. This bibliometric study seeks to provide a comprehensive overview of past and current research trends, emphasizing the potential role of tumor microenvironment, signaling pathways and immune cells in the context of immune checkpoint inhibitors (ICIs) and tumor immune evasion.


Assuntos
Microambiente Tumoral , Neoplasias da Bexiga Urinária , Humanos , Evasão da Resposta Imune , Imunoterapia , Bibliometria
14.
Nutrients ; 16(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337734

RESUMO

The biosynthesis of thyroid hormones is essential for brain and neurological development. It requires iodine as a key component but is also influenced by other nutrients. Evidence for the combined nutrient status in relation to thyroid hormones during pregnancy is limited. We aimed to investigate the joint associations of iodine, selenium, zinc, calcium, magnesium and iron with maternal thyroid functions in 489 pregnant women from Hangzhou, China. Serum levels of six essential minerals and thyroid function parameters were measured during the first antenatal visit. Linear regression, quantile g-computation and Bayesian kernel machine regression were used to explore the individual and joint relationships between the six minerals and thyroid hormones. Linear regression analyses revealed that calcium was positively associated with free triiodothyronine (FT3). Zinc was positively associated with free thyroxine (FT4). Iodine was negatively associated with thyroid-stimulating hormone (TSH) and positively associated with FT3 and FT4. The quantile g-computation and BKMR models indicated that the joint nutrient concentration was negatively associated with TSH and positively associated with FT3 and FT4. Among the six minerals, iodine contributed most to thyroid function. The findings suggested that maintaining the appropriate concentration of minerals, either as individuals or a mixture, is important for thyroid health during pregnancy.


Assuntos
Iodo , Selênio , Feminino , Humanos , Gravidez , Gestantes , Cálcio , Teorema de Bayes , Testes de Função Tireóidea , Hormônios Tireóideos , Tireotropina , Zinco , China , Tiroxina
15.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 551-563, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38404180

RESUMO

Cisplatin (CDDP) is a widely used chemotherapeutic agent that has remarkable antineoplastic effects. However, CDDP can cause severe acute kidney injury (AKI), which limits its clinical application. Agrimol B is the main active ingredient found in Agrimonia pilosa Ledeb and has a variety of pharmacological activities. The effect of agrimol B on CDDP-induced renal toxicity has not been determined. To investigate whether agrimol B has a protective effect against CDDP-induced AKI, we first identify Sirtuin 1 (Sirt1) as a critical target protein of agrimol B in regulating AKI through network pharmacology analysis. Subsequently, the AKI mouse model is induced by administering a single dose of CDDP via intraperitoneal injection. By detecting the serum urea nitrogen and creatinine levels, as well as the histopathological changes, we confirm that agrimol B effectively reduces CDDP-induced AKI. In addition, treatment with agrimol B counteracts the increase in renal malondialdehyde level and the decrease in superoxide dismutase (SOD), catalase and glutathione levels induced by CDDP. Moreover, western blot results reveal that agrimol B upregulates the expressions of Sirt1, SOD2, nuclear factor erythroid2-related factor 2, and downstream molecules, including heme oxygenase 1 and NAD(P)H quinone dehydrogenase 1. However, administration of the Sirt1 inhibitor EX527 abolishes the effects of agrimol B. Finally, we establish a tumor-bearing mouse model and find that agrimol B has a synergistic antitumor effect with CDDP. Overall, agrimol B attenuates CDDP-induced AKI by activating the Sirt1/Nrf2 signaling pathway to counteract oxidative stress, suggesting that this compound is a potential therapeutic agent for the treatment of CDDP-induced AKI.


Assuntos
Injúria Renal Aguda , Butanonas , Cisplatino , Fenóis , Camundongos , Animais , Cisplatino/toxicidade , Sirtuína 1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Transdução de Sinais , Rim/metabolismo , Estresse Oxidativo
16.
Adv Mater ; 36(21): e2313746, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332722

RESUMO

In organic light-emitting diode (OLED), achieving high efficiency requires effective triplet exciton confinement by carrier-transporting materials, which typically have higher triplet energy (ET) than the emitter, leading to poor stability. Here, an electron-transporting material (ETM), whose ET is 0.32 eV lower than that of the emitter is reported. In devices, it surprisingly exhibits strong confinement effect and generates excellent efficiency. Additionally, the device operational lifetime is 4.9 times longer than the device with a standard ETM, 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl) phenyl (whose ET 0.36 eV is higher than the emitter). This anomalous finding is ascribed to the exceptionally long triplet state lifetime (≈0.2 s) of the ETM. It is named as long-lifetime triplet exciton reservoir effect. The systematic analysis reveals that the long triplet lifetime of ETM can compensate the requirement for high ET with the help of endothermic energy transfer. Such combination of low ET and long lifetime provides equivalent exciton confinement effect and high molecular stability simultaneously. It offers a novel molecular design paradigm for breaking the dilemma between high efficiency and prolonged operational lifetime in OLEDs.

17.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38339510

RESUMO

In this study, we propose a meticulous method for the three-dimensional modeling of slope models using structured light, a swift and cost-effective technique. Our approach aims to enhance the understanding of slope behavior during landslides by capturing and analyzing surface deformations. The methodology involves the initial capture of images at various stages of landslides, followed by the application of the structured light method for precise three-dimensional reconstructions at each stage. The system's low-cost nature and operational convenience make it accessible for widespread use. Subsequently, a comparative analysis is conducted to identify regions susceptible to severe landslide disasters, providing valuable insights for risk assessment. Our findings underscore the efficacy of this system in facilitating a qualitative analysis of landslide-prone areas, offering a swift and cost-efficient solution for the three-dimensional reconstruction of slope models.

18.
Environ Int ; 185: 108513, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382403

RESUMO

Cadmium (Cd) is a toxic heavy metal found in natural and industrial environments. Exposure to Cd can lead to various metabolic disturbances, notably disrupting glucose and lipid homeostasis. Despite this recognition, the direct impact of Cd exposure on lipid metabolism within adipose tissue, and the mechanisms underlying these effects, have not been fully elucidated. In this study, we found that Cd accumulates in adipose tissues of mice subjected to Cd exposure. Intriguingly, Cd exposure in itself did not induce significant alterations in the adipose tissue under normal conditions. However, when subjected to cold stimulation, several notable changes were observed in the mice exposed to Cd, including a reduction in the drop of body temperature, a decrease in the size of inguinal white adipose tissue (WAT), and an increase in the expression of thermogenic genes UCP1 and PRDM16. These results indicate that Cd exposure might enhance the responsiveness of adipose tissue to external stimuli and increase the energy expenditure of the tissue. RNA-seq analysis further revealed that Cd exposure altered gene expression profiles, particularly affecting peroxisome proliferator-activated receptor (PPAR)-mediated metabolic pathways, promoting metabolic remodeling in adipose tissue and resulting in the depletion of lipids stored in adipose tissue for energy. Non-targeted metabolomic analysis of mouse serum showed that Cd exposure significantly disrupted metabolites and significantly increased serum fatty acid and triglyceride levels. Correspondingly, population-level data confirmed an association between Cd exposure and elevated levels of serum total cholesterol, total triglycerides, and low-density lipoprotein cholesterol. In summary, we provide substantial evidence of the molecular events induced by Cd that are relevant to the regulation of lipid metabolism in adipose tissue. Our findings suggest that the toxic effects of Cd can impact adipocyte functionality, positioning adipose tissue as a critical target for metabolic diseases resulting from Cd exposure.


Assuntos
Tecido Adiposo Marrom , Cádmio , Camundongos , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Tecido Adiposo Marrom/metabolismo , Transcriptoma , Tecido Adiposo , Perfilação da Expressão Gênica , Colesterol
19.
Metabolites ; 14(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393000

RESUMO

Emerging pollutants, a category of compounds currently not regulated or inadequately regulated by law, have recently become a focal point of research due to their potential toxic effects on human health. The gut microbiota plays a pivotal role in human health; it is particularly susceptible to disruption and alteration upon exposure to a range of toxic environmental chemicals, including emerging contaminants. The disturbance of the gut microbiome caused by environmental pollutants may represent a mechanism through which environmental chemicals exert their toxic effects, a mechanism that is garnering increasing attention. However, the discussion on the toxic link between emerging pollutants and glucose metabolism remains insufficiently explored. This review aims to establish a connection between emerging pollutants and glucose metabolism through the gut microbiota, delving into the toxic impacts of these pollutants on glucose metabolism and the potential role played by the gut microbiota.

20.
iScience ; 27(1): 108729, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38230259

RESUMO

CircRNAs are implicated in colorectal cancer (CRC) development and progression. Protein O-fucosyltransferase 1 (POFUT1) plays an oncogenic role via activating Notch1 signaling in CRC. However, the roles of circPOFUT1, which is originated from POFUT1, have not been investigated. Our study showed circPOFUT1 was highly expressed in CRC tissues and cells. CircPOFUT1 enhanced the proliferation, migration and invasion of CRC cells, and promoted tumor growth and liver metastasis in vivo. It also reinforced stemness and chemoresistance of CRC cells. Mechanistically, circPOFUT1 regulated the function of E2F7 via sponging miR-653-5p, thereby transcriptionally inducing WDR66 expression and further promoting metastasis in CRC. On the other hand, circPOFUT1 promoted stemness and chemoresistance of CRC cells via stabilizing BMI1 in an IGF2BP1-dependent manner. In conclusion, circPOFUT1 fosters CRC metastasis and chemoresistance via decoying miR-653-5p/E2F7/WDR66 axis and stabilizing BMI1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...